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We investigate the scaling of Tsallis entropy in disordered quantum spin-S chains. We show that an
extensive scaling occurs for specific values of the entropic index. Those values depend only on the mag-
nitude S of the spins, being directly related with the effective central charge associated with the model.
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1. Introduction

Correlations among parts of a quantum system are behind re-
markable phenomena, such as a quantum phase transition (QPT)
[1,2]. In particular, the relationship between correlations and QPTs
is revealed by the behavior of entanglement at criticality as
measured, e.g., by the von Neumann entropy (see, for instance,
Ref. [3]). Given a quantum system in a pure state |ψ〉 and a biparti-
tion of the system into two subsystems A and B , the von Neumann
entropy between A and B reads

S = −Tr(ρA lnρA) = −Tr(ρB lnρB), (1)

where ρA = TrB ρ and ρB = TrA ρ denote the reduced density ma-
trices of A and B , respectively, with ρ = |ψ〉〈ψ |. If A and B are
probabilistic independent (such that ρ = ρA ⊗ ρB ), the von Neu-
mann entropy is additive, i.e., S AB = S A + S B . As a consequence,
S is extensive for uncorrelated subsystems, namely, S(L) ∝ L,
where L denotes the size of a block of the system. On the other
hand, S becomes nonextensive in presence of correlations. In-
deed, for critical systems in one dimension, which are known to
be highly entangled, conformal invariance implies a diverging log-
arithmic scaling given by S(L) ∝ (c/3) ln L (or, more specifically,
S(L) = (c/3) ln L + constant), where c is the central charge asso-
ciated with the Virasoro algebra of the underlying conformal field
theory [4–6]. For noncritical (gapful) systems in one dimension,
entanglement saturates at a constant value k, i.e., S(L) → k as
L → ∞. More generally, for higher dimensions, noncritical systems
are expected to obey the area law, which implies that the von Neu-
mann entropy of a region scales as the surface area of the region
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instead of the volume of the region itself. In other words, the area
law establishes that S(L) ∝ LD−1 (L → ∞), where D is the dimen-
sion of the system.

Remarkably, it has recently been shown in Refs. [7,8] that
a quantum system may exhibit specific probability correlations
among its parts such that an extensive entropy can be achieved
even for highly correlated subsystems. This has been obtained by
generalizing the von Neumann entropy into the nonadditive Tsallis
q-entropy [9,10]

Sq[ρ] = 1

1 − q

(
Trρq − 1

)
, (2)

with q ∈ R. One can show that the von Neumann entropy is a par-
ticular case of Eq. (2) by taking q = 1. Tsallis entropy has been
successfully applied to handle a variety of physical systems, in
particular those exhibiting long-range interactions. Recent exper-
imental results for its predictions can be found, e.g., in Refs. [11,
12]. In Tsallis statistics, the additivity of the von Neumann entropy
for independent subsystems is replaced by the pseudo-additivity
relation of the Sq entropy

Sq[ρA ⊗ ρB ] = Sq[ρA] + Sq[ρB ]
+ (1 − q)Sq[ρA]Sq[ρB ]. (3)

The investigation of Sq in conformal invariant quantum systems
has revealed that the extensivity of the entropy can be achieved
for a particular choice qext of the entropic index q in Eq. (2). In par-
ticular, qext is directly associated with the central charge c. More
specifically, the extensivity of Sq occurs for [8]

qext =
√

9 + c2 − 3

c
. (4)
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Fig. 1. A schematic picture of the RSP. Spin singlets are composed randomly at arbi-
trary distances.

The aim of this work is to consider the scaling of the nonad-
ditive entropy Sq and, consequently, its extensivity in quantum
critical spin chains under the effect of disorder into the exchange
couplings among the spins. Indeed, disorder appears as an essen-
tial feature in a number of condensed matter systems, motivating
a great deal of theoretical and experimental research (see, e.g.,
Refs. [13,14]). In particular, it is well known that, in the case
of a spin-S random exchange Heisenberg antiferromagnetic chain
(REHAC), disorder can drive the system to the so-called random
singlet phase (RSP), which is a gapless phase described by spin
singlets distributed over arbitrary distances [15]. In recent years,
it has been observed that the entanglement entropy in critical
random spin chains displays a logarithmic scaling that closely re-
sembles the behavior of pure (non-disordered) systems. Indeed,
for a block of spins of length L, we have that the von Neumann
entropy reads S(L) ∝ (ceff /3) ln L, where ceff is an effective cen-
tral charge that governs the scale of the entropy [16]. Moreover,
it has been shown that in the case of the RSP, ceff is determined
solely in terms of the magnitude S of the spin in the chain [17–
19] (see Ref. [20] for a review of entanglement in random systems
and Ref. [21] for other connected results). Here, we will show that
the extensivity of Sq can also be obtained for random critical spin
chains, with qext governed by ceff . Hence, qext will be given as a
unique function of the spin S . Moreover, as we will see, around
the extensivity point qext , Sq(L) ∝ Lγ , with the exponent γ of the
power law given by a quadratic function of q.

2. Nonadditive entropy for a set of random singlets

We begin by considering the typical arrange of a quantum spin-
S chain in the RSP, which is provided by a set of spin singlets
distributed over arbitrary distances, as sketched by Fig. 1.

In order to evaluate Sq in the RSP, we begin by considering a
number n of singlets connecting a contiguous block composed by
L spins with the rest of the chain. In this situation, the pseudo-
additivity of Sq implies that Tsallis entropy is given by the Propo-
sition below.

Proposition 1. For a bipartite system composed of a number n of spin-S
singlets connecting two blocks, with n ∈ N, Tsallis entropy S (n)

q for each
block is given by

S (n)
q = 1

1 − q

[(
(2S + 1)n(1−q) − 1

)]
. (5)

Proof. The proof can be obtained by finite induction. Indeed,
the single-site reduced density operator ρA for a spin-S singlet
can be represented by a D-dimensional diagonal matrix given by
ρA = diag(D−1, D−1, . . . , D−1), with D = 2S + 1. Therefore, from
Eq. (2), we obtain that S (1)

q = (1 − q)−1(D1−q − 1). For two sin-
glets, the pseudo-additivity of Sq given by Eq. (3) implies that

S (2)
q = (1 − q)−1(D2(1−q) − 1). By taking the general expression for

the entropy for n singlets as S (n)
q = (1 − q)−1(Dn(1−q) − 1), we ob-

tain for (n + 1) singlets that S (n+1)
q = (1 − q)−1(D(n+1)(1−q) − 1).

Hence, Eq. (5) holds for any n ∈ N. �
Tsallis entropy for the RSP can then be obtained by numerically

averaging S (n)
q over a sample of random couplings along the chain.

Fig. 2. Modified MDH renormalization procedure for spin-S chains.

These random configurations are generated by following a gap-
less probability distribution, which drives the system to the RSP,
with the entropy of each configuration computed by counting the
spin singlets via a renormalization group approach described in the
next section.

3. Renormalization group method for random spin systems

The RSP can be conveniently handled via a perturbative real-
space renormalization group method introduced by Ma, Dasgupta
and Hu (MDH) [22,23], which was successfully applied to the spin-
1/2 REHAC. This approach was proven to be asymptotically exact,
which allowed for a fully characterization of the properties of the
RSP [15]. Considering a set of random Heisenberg antiferromag-
netic interactions J i between neighboring spins Si and Si+1, the
original MDH method consists in finding the strongest interaction
Ω between a pair of spins (S2 and S3 in Fig. 2a) and treating the
couplings of this pair with its neighbors ( J1 and J2 in Fig. 2a) as a
perturbation. Diagonalization of the strongest bond leads at zeroth
order in perturbation theory to a singlet state between the spins
coupled by Ω . Then, the singlet is decimated away and an effective
interaction J ′ is perturbatively evaluated. By iteratively applying
this procedure, the low-energy behavior of the ground state will
be given by a collection of singlet pairs and the structure of the
RSP will naturally appear.

Unfortunately, when generalized to higher spins, this method,
at least in its simplest version, revealed to be ineffective. The
reason is that, after the elimination procedure of the strongest
bond Ω , the effective interaction J ′ may be greater than Ω . Then,
the problem becomes essentially non-perturbative for arbitrary
distributions of exchange interactions. For instance, considering the
REHAC with arbitrary spin-S , the renormalized coupling is given by
the recursive relation [24]

J ′ = 2

3
S(S + 1)

J1 J2

Ω
. (6)

Notice that, for S � 1, the renormalization factor is (2/3)S ×
(S + 1) > 1, resulting in the breakdown of perturbation theory.
In order to solve this problem, a generalization of the MDH
method was proposed in Refs. [25,26] (for other proposals, see
also [27,28]). This generalized MDH method consists in either of
the following procedures shown in Fig. 2. Taking the case of the
Heisenberg chain as an example, if the largest neighboring interac-
tion to Ω , say J1, is J1 < 3Ω/[2S(S + 1)], then we eliminate the
strongest coupled pair obtaining an effective interaction between
the neighbors to this pair which is given by Eq. (6) (see Fig. 2a).
This new effective interaction is always smaller than those elimi-
nated. Now suppose J1 > J2 and J1 > 3Ω/[2S(S +1)]. In this case,
we consider the trio of spins-S coupled by the two strongest inter-
actions of the trio, J1 and Ω and solve it exactly (see Fig. 2b).
This trio of spins is then substituted by one effective spin inter-
acting with its neighbors through new renormalized interactions
obtained by degenerate perturbation theory for the ground state
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