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In this Letter, the differential transform method is developed to solve solitary waves governed by
Camassa-Holm equation. Purely analytic solutions are given for solitons with and without continuity
at crest. A Padé technique is also combined with DTM. This provides us a new analytic approach to solve
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1. Introduction

It is difficult to solve nonlinear problems, especially by analytic
techniques. In 1986, Zhou [1] first introduced the differential trans-
form method (DTM) in solving linear and nonlinear initial value
problems in the electrical circuit analysis. The differential trans-
form method obtains an analytical solution in the form of a poly-
nomial. It is different from the traditional high order Taylor’s se-
ries method, which requires symbolic competition of the necessary
derivatives of the data functions. The Taylor series method is com-
putationally taken long time for large orders. Ravi Kanth and Aruna
have developed this method for PDEs and obtained closed form se-
ries solutions for both linear and nonlinear problems [2,3]. Besides
the differential transform method is independent on whether or
not there exist small parameters in the considered equation. There-
fore, the differential transform method can overcome the foregoing
restrictions and limitations of perturbation techniques so that it
provides us with a possibility to analyze strongly nonlinear prob-
lems. This method has been successfully applied to solve many
types of nonlinear problems [4-9]. All of the previous applications
of the differential transform method deal with solutions without
discontinuity. However, many nonlinear problems have different
types of discontinuity. In this Letter, in order to verify the validity
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of the differential transform method for nonlinear problems with
discontinuation, we further apply it to solve shallow solitary water
wave problems governed by Camassa-Holm equation.

In the study of shallow water waves, Camassa and Holm [10]
used the Hamiltonian method to derive a completely integrable
wave equation

U + 2Ky — Uyxr + 3UlUx = 2Uxlyy + Ullyxx, (1)

where k is a constant related to the critical shallow water wave
speed, ¢ is the phase speed, u = u(x,t) denotes the velocity,
x and t denote the spatial and temporal variables, respectively.
Since the birth of the Camassa-Holm equation (1), a huge amount
of work has been carried out to study dynamic properties of Eq. (1)
[11-15].

For k =0, Eq. (1) has traveling wave solutions of the form
ce~ ¥t called peakons, which capture an essential feature of the
traveling waves of largest amplitude (see Constantin [16], Con-
stantin and Escher [17,18] and Toland [19]). For k > 0, it’s solitary
waves are stable solitons (see Constantin and Strauss [20,21] and
Johnson [22]). This is rather interesting. We employ the differen-
tial transform method to solve this solitary wave problem so as to
provide a new analytic approach for nonlinear problems with dis-
continuity.

2. Differential transform method
2.1. Basicidea

The basic definitions and fundamental operations of the differ-
ential transform method are defined as follows [23,24]: Consider
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Table 1
The operation for differential transformation method.

Transformed function
W (k) = G(k) + H (k)

Original function

w(x) = g(x) +h(x)

w(X) = og(x) W (k) = aG (k)

w(x) = 2% Wk = (k+1)Gk+1)

w(x) = gX)h(x) W (k)= Yo G(r)H(k —1)

wx) = DE® W k) = (k+1)(k+2) - - (k+m)G(k +m)

a function of variable w(x), be analytic in the domain 2 and let
X = xp in this domain. The function w(x) is then represented by
one series whose center located at xg. The differential transform of
the function w(x) is in the form

1 [d*w(x)
wio = 5| |

. (2)

X=Xp

where w(x) is the original function and W (k) is the transformed
function.
The differential inverse transform of U, (k) is defined as

o0

wx) =Y Wkx-x). (3)
k=0

In a real application, and when xg is taken as 0, then the function

w(x) can be expressed by a finite series and with the aid of Eq. (3),
w(x) can be written as

9} [e e} 1 dk
woo =3 Wi =3 g | TR ]| @
k=0 k=0 'L X x=0

The Mth-order approximation of the object function w(x) is given
by

Y1 Tdwx) P - ‘
wx =Y [ ]‘ X=3"Wkx. (5)
x=0 k=0

k| dxk
k=0
The fundamental mathematical operations performed by general-
ized differential transform method are listed in Table 1.

2.2. Differential transform-Padé technique

The accuracy and convergence of the solution given by series
Eq. (5) can be further enhanced by the differential transform-Padé
technique. The basic idea of summation theory is to represent f(x),
the function in question, by a convergent expression. In Euler sum-
mation this expression is the limit of the convergent series, while
in Borel summation this expression is the limit of a convergent in-
tegral. The difficulty with Euler and Borel summation is that all
of the terms of the divergent series must be known exactly before
the sum can be found even approximately. But in real computation,
only a few terms of a series can be calculated before a state of ex-
haustion is reached. Therefore, a summation algorithm is needed
which requires as input only a finite number of terms of diver-
gent series. Then as each new term is given, we can give a new
and improved estimate of exact sum of the divergent series. Padé
approximation is a well-known summation method which having
this property.

As a method of enhancing accuracy and convergence of the se-
ries, Padé approximation is widely applied [25-27]. The idea of
Padé summation is to replace a power series

400
fR=) cax" (6)
n=0

by a sequence of rational functions which is a ratio of two polyno-
mials
N k
[ = 0 (7)
k=0 biex*
where we choose bg =1 without loss of generality. We choose the
remaining (M + N + 1) coefficients ag, ay,...,an, b1, b2, ...,bu, SO
that the first (M + N + 1) terms in the power series expansion of
f,\’} (x) match the first (M + N +1) terms of the power series f(x) =
,Tjg cnX". The resulting rational function fﬁ(x) is called a Padé
approximate. We will see that constructing fﬁ (x) is very useful. If
> cpX" is a power series representation of the function f(x), then
in many instances f,{}(x) — f(x) as N,M — oo, even if ) cyx" is
a divergent series. Usually we consider only the convergence of
the Padé sequences foj, fllﬂ, 22+],... having N =M + | with |
fixed and M — oo. If j =0 then this sequence is called diagonal
sequence.

It often works quite well, even beyond their proven range of ap-
plicability. We combine the differential transform with Padé tech-
nique, and call this method differential transform-Padé approxima-
tion.

3. Mathematical formulation

Under the definition & = Ix + ct

(c + 2lkyu’ + 3luu’ — clPu” =2Pu'u” + Buu”, (8)

where the prime denotes the derivative with respect to &.

Camassa and Holm [10] pointed out that the solitary wave so-
lution exists when 0 <k < % Due to the symmetry of the solitons,
we consider the wave profile only for & > 0. For simplicity, we
choose c=1and [=1.

3.1. Solutions with discontinuity of derivative at crest

Let us consider the first case that the first derivative at crest of
the solitary waves has not continuity, corresponding to k = 0. In
this special case, Eq. (8) reads

cu’ 4 3luy’ — clPu” = 2Bv'u” + Buu”. 9)
The corresponding boundary conditions are

u(0) =1, u(+4o0) =0. (10)
It should be emphasized that the boundary condition u’(0) =0 is
invalid now. However, the derivative at crest of the solitary waves
from right-hand side exists, namely, u’ (0), uQ’r(O),...,uS':) (0) ex-
ist. Camassa and Holm pointed out [10] that the solitary waves
with discontinuity at crest exist in the case of k =0, and the cor-
responding exact solution is

uE)=e" 8l (11)
The transformed version of Eq. (9) is in the following form
j
G+DUG+D+3Y (j—i+DUGUG—i+1)
i=0
—(+3)0+2D0G+DUG+3)
J
:22(1’—i+2)(j—i+1)(i+1)U(i+l)U(j—i+2)
i=0
J
+Y G—i4+3)(—i+2(—i+DUDUG—i+3).
i=0



Download English Version:

https://daneshyari.com/en/article/1863736

Download Persian Version:

https://daneshyari.com/article/1863736

Daneshyari.com


https://daneshyari.com/en/article/1863736
https://daneshyari.com/article/1863736
https://daneshyari.com/

