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In this paper, an efficient and accurate computational method based on the Legendre wavelets (LWs) is 
proposed for solving the time fractional diffusion-wave equation (FDWE). To this end, a new fractional 
operational matrix (FOM) of integration for the LWs is derived. The LWs and their FOM of integration 
are used to transform the problem under consideration into a linear system of algebraic equations, which 
can be simply solved to achieve the solution of the problem. The proposed method is very convenient for 
solving such problems, since the initial and boundary conditions are taken into account automatically.
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1. Introduction

Many phenomena in engineering, physics, chemistry and other 
sciences can be described very successfully by models using math-
ematical tools from fractional calculus [1]. It is worth nothing that 
analytic solutions of most fractional differential equations cannot 
be obtained explicitly, so proposing new methods to find numer-
ical solutions of these equations has practical importance. Due to 
this fact, in recent years several numerical methods were proposed 
for fractional differential equations, for instance see [2–11]. An im-
portant class of fractional differential equations which has been 
studied widely in recent years is the time fractional diffusion-
wave equation (FDWE). The time FDWE is obtained from the clas-
sical diffusion-wave equation by replacing the second-order time 
derivative term by a fractional derivative of order 1 < α ≤ 2 [12]. 
Many of the universal electromagnetic, acoustic, mechanical re-
sponses can be described accurately by the FDWE [16,17]. It is also 
worth noting that fractional diffusion equation and diffusion wave 
equation have a lot in common. For example, they can behave like 
diffusion. For more details about some important properties of the 
fractional diffusion equation and diffusion wave equation, the in-
terested reader is advised to see [13–15]. In the last few years, 
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several numerical methods have been proposed for solving FDWE, 
for instance see [12,16–30]. In recent years, the LWs have been ap-
plied for solving some fractional differential equations, for instance
see [31–33].

In this paper, we propose an efficient and accurate computa-
tional method based on the LWs for solving the FDWE with damp-
ing [27]:

∂αu(x, t)

∂tα
+ ∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
+ q(x, t),

(x, t) ∈ [0,1] × [0,1], 1 < α ≤ 2, (1)

subject to the initial and boundary conditions:⎧⎨⎩ u(x,0) = f0(x),
∂u(x,0)

∂t
= f1(x), x ∈ [0,1],

u(0, t) = g0(t), u(1, t) = g1(t), t ∈ [0,1],
(2)

where the parameter α denotes the order of the fractional deriva-
tive in the Caputo sense, which will be described in the next 
section, f0, f1, g0 and g1 are given functions in L2[0, 1], and q
is a given function in L2([0, 1] × [0, 1]).

In the case α = 2, this equation is the telegraph equation, which 
governs electrical transmission in a telegraph cable [28]. This equa-
tion can also be characterized as a wave equation, governing wave
motion in a string, with a damping effect due to the term ∂u(x,t)

∂t .
In order to compute the approximate solution of this equation, 

we first present some useful properties of the LWs and then derive 
a new FOM of integration for these basis functions. A collocation 
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method based on hat functions (HFs) is employed to derive a gen-
eral procedure for forming this matrix. The proposed method is 
based on reducing the problem under consideration into a lin-
ear system of algebraic equations by expanding the solution as 
LWs with unknown coefficients and using the FOM of integra-
tion, which can be simply solved to achieve the solution of the 
problem. The proposed method is very convenient for solving such 
problems, since the initial and boundary conditions are taken into 
account automatically.

The current paper is organized as follows: In Section 2, some 
necessary definitions and mathematical preliminaries of the frac-
tional calculus are reviewed. In Section 3, the LWs and some of 
their properties are investigated. In Section 4, the proposed com-
putational method is described for solving the FDWE (1). In Sec-
tion 5, the proposed method is applied for solving some numerical 
examples. Finally a conclusion is drawn in Section 6.

2. Preliminaries and notations

In this section, we give some necessary definitions and math-
ematical preliminaries of the fractional calculus theory which are 
required for establishing our results.

Definition 2.1. A real function u(t), t > 0, is said to be in the space 
Cμ , μ ∈ R if there exists a real number p (>μ) such that u(t) =
t pu1(t), where u1(t) ∈ C[0, ∞] and it is said to be in the space Cn

μ

if u(n) ∈ Cμ , n ∈N.

Definition 2.2. The Riemann–Liouville fractional integration oper-
ator of order α ≥ 0 of a function u ∈ Cμ , μ ≥ −1, is defined as 
[34]:

(
Iαu

)
(t) =

{
1

Γ (α)

∫ t
0 (t − τ )α−1u(τ )dτ , α > 0,

u(t), α = 0.
(3)

The Riemann–Liouville fractional integration operator has the fol-
lowing properties:(

Iα Iβu
)
(t) = (

Iα+βu
)
(t), Iαtϑ = Γ (ϑ + 1)

Γ (α + ϑ + 1)
tα+ϑ , (4)

where α, β ≥ 0 and ϑ > −1.

Definition 2.3. The fractional derivative operator of order α > 0 in 
the Caputo sense is defined as [34]:(

Dα∗ u
)
(t)

=
{

dnu(t)
dtn , α = n ∈N,

1
Γ (n−α)

∫ t
0 (t − τ )n−α−1u(n)(τ )dτ , n − 1 < α < n,

(5)

where n is an integer, t > 0, and u ∈ Cn
1 .

The useful relation between the Riemann–Liouville operator 
and Caputo operator is given by the following expression [34]:

(
Iα Dα∗ u

)
(t) = u(t) −

n−1∑
k=0

u(k)
(
0+) tk

k! ,

t > 0, n − 1 < α ≤ n, (6)

where n is an integer, and u ∈ Cn
1 .

3. The LWs and their properties

The LWs ψnm(t) = ψ(k, n, m, t) have four arguments, n =
1, 2, . . . , 2k , k is any arbitrary non-negative integer, m is the de-
gree of the Legendre polynomials and independent variable t is 
defined on [0, 1]. They are defined on the interval [0, 1] by [32]:

ψnm(t) =
{ √

2m + 12
k
2 Pm(2k+1t − 2n + 1), t ∈ [n−1

2k , n
2k ],

0, o.w.
(7)

Here, Pm(t) are the well-known Legendre polynomials of degree m, 
which are orthogonal with respect to the wight function w(t) = 1, 
on the interval [−1, 1] [35]. The set of the LWs is an orthogonal 
set with respect to the weight function w(t) = 1.

A function u(t) defined over [0, 1] may be expanded by the LWs 
as:

u(t) =
∞∑

n=1

∞∑
m=0

cnmψnm(t), (8)

where cnm = (u(t), ψnm(t)) and (., .) denotes the inner product in 
L2[0, 1].

By truncating the infinite series in (8), we can approximate u(t)
as follows:

u(t) �
2k∑

n=1

M−1∑
m=0

cnmψnm(t) = C T Ψ (t), (9)

where T indicates transposition, C and Ψ (t) are m̂ = 2k M column 
vectors.

For simplicity, Eq. (9) can be also written as:

u(t) �
m̂∑

i=1

ciψi(t) = C T Ψ (t), (10)

where ci = cnm and ψi(t) = ψnm(t), and the index i is determined 
by the relation i = M(n − 1) + m + 1.

Thus we have:

C � [c1, c2, . . . , cm̂]T ,

and

Ψ (t) �
[
ψ1(t),ψ2(t), . . . ,ψm̂(t)

]T
. (11)

Similarly, an arbitrary function of two variables u(x, t) defined over 
[0, 1] × [0, 1], may be expanded by the LWs as follows:

u(x, t) �
m̂∑

i=1

m̂∑
j=1

uijψi(x)ψ j(t) = Ψ T (x)UΨ (t), (12)

where U = [uij] and uij = (ψi(x), (u(x, t), ψ j(t))).
The convergence of the LWs expansion in two dimensions is 

investigated in the following theorems:

Theorem 3.1. (See [32].) If the sum of the absolute value of the LWs co-
efficients of a continuous function u(x, t) form a convergent series, then 
the LWs expansion is absolutely uniformly convergent, and convergent to 
the function u(x, t).

Theorem 3.2. (See [32].) If a continues function u(x, t) has bounded 
mixed fourth partial derivative | ∂4u(x,t)

∂x2∂t2 | ≤ M̂, then the LWs expansion 
of the function converges uniformly to the function and also

|uij| ≤ 12M̂

(2n1)
5
2 (2n2)

5
2 (2m1 − 3)2(2m2 − 3)2

, (13)

where i = M(n1 − 1) + m1 + 1 and j = M(n2 − 1) + m2 + 1.

By taking the collocation points (ti = i
m̂−1 , i = 0, 1, . . . , m̂ − 1)

into (11), we define the LWs matrix Φm̂×m̂ as:

Φm̂×m̂ �
[
Ψ (0),Ψ

(
1

m̂ − 1

)
, . . . ,Ψ (1)

]
. (14)
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