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The thermodynamic length gives a Riemannian metric to a system’s phase space. Here we extend 
the traditional thermodynamic length to the information length (L) out of equilibrium and examine 
its properties. We utilise L as a useful methodology of analysing non-equilibrium systems without 
evoking conventional assumptions such as Gaussian statistics, detailed balance, priori-known constraints, 
or ergodicity and numerically examine how L evolves in time for the logistic map in the chaotic regime 
depending on initial conditions. To this end, we propose a discrete version of L which is mathematically 
well defined by taking a set theoretic approach. We identify the areas of phase space where the loss of 
information of the system takes place most rapidly. In particular, we present an interesting result that the 
unstable fixed points turn out to most efficiently drive the logistic map towards a stationary distribution 
through L.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A major goal in statistical mechanics is to understand how 
non-equilibrium systems evolve in time. The main reason this is 
a difficult problem is that much of the theory and machinery of 
traditional Boltzmann Gibbs statistics does not carry over to the 
non-equilibrium regime. Furthermore, non-equilibrium systems are 
not guaranteed to have well-defined time-independent constraints 
which can be utilised in the determination of the form of the prob-
ability density functions (PDFs). Another important issue which is 
addressed in this manuscript is the amount of phase space in the 
course of a system’s (e.g. rapid) time-evolution, as they are not 
guaranteed to have explored all possible states in the phase space, 
invalidating any assumption of ergodicity. Thus, the presence (or, 
existence) of phase space with zero probabilities is a potential 
problem for any system starting from a set of non-equilibrium con-
ditions.

A general measure that has proven to be very appealing the-
oretically is the thermodynamic length (Lth). The thermodynamic 
length endows a phase space with a Riemannian metric, thus al-
lowing one to measure the “distance” that a system travels be-
tween thermodynamic equilibrium states. These systems are gov-
erned by a set of control parameters λi which are the experi-
mentally controllable variables of the system, the thermodynamic 
length is defined as,
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Lth =
τ∫

0

dt

√
dλi

dt
gi j

dλ j

dt
. (1)

The metric gij depends on the parameters of the system being 
analysed. Most previous studies used thermodynamic functions to 
define gij based on equilibrium states. For instance, Weinhold [19]
used gij = d2U (V , S, N)/dxidx j (xi = U , V , N for i = 1, 2, 3), where 
U is the internal energy which is a function of the extensive vari-
ables. In comparison, Rupeiner [14] used the second derivative of 
the entropy with respect to extensive variables (for other examples 
see [2,5,12]). Out of equilibrium the control parameters are often 
not known, making Weinhold and Rupeiner’s metrics inapplicable. 
Thus, we take the approach of Crook’s [3] and use the probability 
distribution function p(x, t) to define the Fisher information ma-
trix [6] as follows:

gij =
∑

x

p(x, t)
∂ log p(x, t)

∂λi

∂ log p(x, t)

∂λ j
. (2)

Here p(x, t) is the probability of finding the system in “state” x
at time t , given that it evolved from an initial distribution p(x, t0)

at an earlier time, t > t0 and the conservation of total probability 
requires p(x, t) follow, 

∑
x p(x, t) = 1. The control parameters λi

specify how the system evolves through the surface of accessible 
states specified by λi . In equilibrium thermodynamics these could 
be for example the temperature or pressure of the system [3].

As we will see in the next section, putting Eq. (2) into Eq. (1)
and summing over λi and λ j gives us a distance in terms of prob-
ability distributions. It is important to note that Eq. (2) in general 
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fulfils the requirements of a metric either whether the system is in 
equilibrium or not. Interestingly, in thermal equilibrium, using gij

of Eq. (2) in Eq. (1) gives that L is proportional to the covariance 
of the forces conjugate to control parameters λi . That is, in equi-
librium, thermodynamic length can be thought of as an integral 
in time over the fluctuations the system undergoes (see, e.g. [3]). 
Out of equilibrium, this is no longer true, and Eq. (2) is instead re-
lated to the integral of the covariance of fluctuations at different 
times [18].

A large body of theoretical work has already been developed 
for the thermodynamic length, starting with Weinhold [19], Ru-
peiner [14] and Schlögl [16], continuing with [4] among others. 
There is however a distinct lack of numerical illustrations for the 
thermodynamic length. This is partly caused by the computational 
demand in time and difficulties associated with obtaining PDFs 
which are sufficiently accurate.

When our system evolves over a manifold of non-equilibrium 
states we will use the information length (L) instead of the ther-
modynamic length. Using L the relaxation of an arbitrary configu-
ration of the system will be numerically investigated as it relaxes 
to a stationary distribution. In this work stationary does not im-
ply equilibrium, as equilibrium also requires the system satisfy 
detailed balance (as defined in Section 3). In particular, we use 
a discrete map (the logistic map) as a typical example of a non-
equilibrium system which also allows us to take computational 
advantages, as the simulation of maps is much less demanding and 
time-consuming than continuous systems. As noted above, for any 
non-equilibrium system having zero-valued probabilities L can be 
undefined. To overcome this we propose a discrete version of L
which is mathematically well defined by taking a set theoretic ap-
proach.

The paper is organised as follows. Section 2 introduces the in-
formation length and provides its key properties in detail along 
with the definitions of our sets. These are followed in Section 3
where we show that L must increase for any PDFs other than the 
invariant (stationary) distribution. Section 4 will numerically ex-
amine the information length for the logistic map in the chaotic 
regime. In particular, using the logistic map we identify the areas 
of phase space where the conversion of the information of the sys-
tem into work takes place most rapidly. We also show that the lo-
gistic map very often follows the path of minimum length. That is, 
the system follows the path of minimum information change. The 
importance of the minimum/optimal path has been noted in pre-
vious studies. For instance, J. Nulton et al. utilised this concept 
to link the thermodynamic length between equilibrium states to 
the “optimal” path in annealing processes [11]. In [5] it was sug-
gested that experiments using biological motors would yield paths 
of minimum length. Conclusions are provided in Section 5.

2. Information length

To follow the path of a general non-equilibrium ensemble (e.g.
as it evolves towards equilibrium), we measure the Fisher–Rao in-
formation by using Eq. (2) in Eq. (1) and define the information 
length as follows,

L =
τ∫

0

dt

√√√√∑
x

1

p(x, t)

[
dp(x, t)

dt

]2

. (3)

Now distances are measured by the difference between consec-
utive PDFs. The difference in PDFs gives a measure of the statistical 
distance [11,20]. The evolution of a system can then be envisioned 
as the trajectory in the probability space where the distance/met-
ric at different times is provided by the statistical distance. As time 

is the only parameter, Eq. (3) is ideally suited for analysing exper-
imental data, which we use exclusively in the remainder of the 
paper.

An alternative expression to Eq. (3) is often necessary to de-
scribe the evolution of non-equilibrium systems since L is un-
defined for PDFs with zero values (i.e. when p(x, t) = 0), as it is 
written in Eq. (3). This problem can be readily remedied by ex-
pressing L in terms of q = √

p, as suggested by Wootters [20], 
which transforms Eq. (3) into the following form,

L = 2

τ∫
0

dt

√√√√∑
x

(
dq(x, t)

dt

)2

, (4)

which no longer has this singularity problem. However if time is 
discrete, Eq. (4) is not equivalent to Eq. (3), making it necessary 
to look for a different form of L. Thus, in this paper, we propose 
a set theoretical approach to overcome this problem, as presented 
shortly.

To this end, we utilise a discrete version of Eq. (3),

L =
τ∑

t=1

�t

√√√√∑
x

1

p(x, t)

(
�p(x, t)

�t

)2

=
τ∑

t=1

�L(t)�t. (5)

Here, �p(x, t) = p(x, t′) − p(x, t) where t′ = t + 1. Note that for 
discrete systems, t simply denotes the iteration number, taking the 
integer values as t = 1, 2, . . . , τ where τ is the total time of a given 
evolution. Consequently, for most of this work the time step �t
is 1. That is, p(x, t′) (t′ = t + 1) and p(x, t) are the two consecutive 
PDFs (i.e. the probability of being in state x at time t′ or t , respec-
tively) while �p(x, t) = p(x, t′) − p(x, t) is the difference between 
these two consecutive PDFs. As we are dealing with numerical 
simulations, our state space X will be coarse grained into a finite 
number of disjoint sets x, which represent the new “states” of the 
system. For the logistic map, examined shortly, x is a one dimen-
sional variable, x ∈ [−1, 1]. The probability of being in “state” x at 
time t is then, p(x, t), where, 

∑
x p(x, t) = 1. It is straightforward 

to generalise x to any higher dimensions, x = {xi, x j, . . . , xN }.
To guarantee that L is well defined for arbitrary discrete non-

equilibrium systems, we need to account for states that have zero 
probability of being occupied along the system’s evolution. That is, 
given a total state space X, the probability of finding the system 
p(x, t) in a particular states x can be zero (p(x, t) = 0 for some 
x ∈ X). As a result we define the following two sets depending on 
the evolution of PDFs at two consecutive times t and t′ as

Q p = {
x : p(x, t) �= 0

∣∣ p
(
x, t′) = 0

}
,

Q w = {
x : p(x, t) �= 0

∣∣ p
(
x, t′) �= 0

}
. (6)

One possibility that is not included in the above equation is the 
case where p(x, t) = 0 and p(x, t′) �= 0, which can however be 
shown to have no contribution to L. The subscript p in Q p desig-
nates the unused probability of evolving over one time step, while 
w is the set that gives a measure of the available work in evolving 
over one time step, as shown later. To isolate the separate contri-
butions to L from Q p and Q w , we define

L Q p =
∑

x∈Q p

p(x, t)

(�t)2
,

L Q w =
∑

x∈Q w

1

p(x, t)

(
�p(x, t)

�t

)2

,

and express Eq. (5) as:

L =
τ∑

t=1

�t
√

L Q p + L Q w . (7)
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