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We investigate the “piston problem” for the case of a viscous, but non-thermally conducting, gas 
with constant transport coefficients under the recently introduced generalization of the Navier–Stokes 
(NS) equations known as the finite-scale Navier–Stokes (FSNS) equations. Along with determining and 
analyzing the integral curves of the resulting kink-type traveling wave solutions (TWS)s, the present 
study also reveals the importance of the bulk viscosity vis-a-vis this special case of FSNS theory and 
highlights the impact that averaging has on the structure of the shock profile.

Published by Elsevier B.V.

1. Introduction

The FSNS equations were put forth by Margolin [9] in 2009. They are obtained from the classical NS equations via the (spatial) 
averaging transform

ψ̂(x, t) = L−1

x+L/2∫
x−L/2

ψ(x, t)dx, (1)

where ψ represents each of the terms in the NS system and the constant L(> 0) is the averaging length scale, and use of the closure 
theorem

ÂB = ÂB̂ +
(

L2

12

)
ÂxB̂x + O

(
L4), (2)

where Âx := ∂Â/∂x and terms O(L4) are neglected in the finalized equations, to handle products; see also Refs. [10,11] and those therein. 
What distinguishes Margolin’s approach from other averaging schemes which have been applied to the NS equations is the fact that L
depends on the observer. That is, L is not inherent to the physical process under consideration; instead, it arises from the means by which 
the flow is probed or modeled [10, §2]. This interpretation of L also distinguishes the finite-scale formulation from other theories of 
generalized continua.1

To date, the only analytical solution of the FSNS equations that has been obtained is one of the traveling wave type for the case of 
a gas in which μ ∝ ρ , μB = 0, and K = 0; see Ref. [24, Eq. (39)], which satisfies Ref. [11, Eq. (24)] under appropriate rescaling. Here, 
ρ(> 0) is the mass density2 of the gas; μ and μB are, respectively, its coefficients of shear and bulk viscosity; and K is the coefficient 

* Corresponding author.
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1 That is, generalizations of classical continuum mechanics that seek to capture the effects of media micro-structure via the introduction of one of more length-scale 
parameters; see, e.g., Refs. [5,12,16–18] and those therein.

2 Hereafter, in keeping with the notation scheme of Ref. [11], ρ will be used to represent ρ̂ .
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of thermal conductivity. Clearly, then, there is a need to investigate the nature of the solutions, in particular, those of the traveling wave 
type, admitted by the FSNS system when different constitutive laws for the transport coefficients are assumed.

The aim of this Note is to probe the FSNS system along the lines just described; specifically, in the context of the piston problem,3 we 
determine and analyze the TWS for a gas in which μ(> 0), μB(≥ 0) are constants, but K = 0. This special case of transport coefficients is 
one of the few for which the (1D) NS system admits an exact solution to the piston problem; see Hayes [6] for a more complete listing. As 
such, the present study generalizes those carried out by Lord Rayleigh [15] and Taylor [20], both in 1910, to include the influence of the 
averaging length scale, L. The work presented below demonstrates the importance of the bulk viscosity vis-a-vis this special FSNS theory; 
it also highlights the impact that averaging has on the structure of the shock profile.

Remark 1. The special case of zero thermal conductivity, but nonzero viscosity, has been termed strictly adiabatic by von Mises [22].

2. Traveling wave analysis: finite-scale theory

Since the (1D) FSNS system has been derived and discussed in several other works (see, e.g., Refs. [9,11]) it will not be restated here. 
Instead, we begin with Margolin and Vaughan’s [11] analysis of the piston problem and take the averaged field variables to be functions 
of the similarity (or wave) variable y = x − vt , where the speed v of the waveform we seek is a positive constant. The finite-scale versions 
of the 1D continuity, momentum, and energy4 equations are thus reduced to [11, §3]

d

dy
(−vρ + uρ) = 0, (3)

d

dy

(−vuρ + u2ρ + Pc
) = 0, (4)

d

dy

(
−vUρ − 1

2
ρu2 v + ρuU + 1

2
ρu3 + Pcu

)
= 0, (5)

respectively, where we recall that the thermal conductivity of the gas is assumed to be negligibly small. Here, to accommodate our 
assumption of constant viscosity, we have modified Eqs. (13) and (19) of Ref. [11] to read

Pc = (γ − 1)ρU + ρχc
(
u′), (6)

χc
(
u′) := A

(
u′)2 − μLρ

−1u′, (7)

respectively, and we refer the reader to Ref. [11, Eq. (7)] for the defining relations of u and U . In Eqs. (6) and (7), γ ∈ (1, 5/3] denotes the 
ratio of specific heats [21], which we take to be a constant; A := L2/12 is, of course, a constant as well; μL(> 0), termed the longitudinal 
coefficient of viscosity [6], is defined as μL := μ( 4

3 +μB/μ), where we note that μB = 0 for monatomic gases [13,21]; and a prime denotes 
d/dy.

2.1. Associated ODE

Now integrating Eq. (5) and then using Eq. (6) to eliminate Pc from the result yields, after solving for the constant of integration K1,

ρU
[
(v − u) − (γ − 1)u

] + 1

2
ρ(v − u)u2 − ρuχc

(
u′) = vρ0U0, (8)

where K1 = vρ0U0 and a zero subscript denotes the (constant) equilibrium state value of the quantity to which it is attached. In turn, 
eliminating the product ρU between Eqs. (8) and (A.5), the latter of which we first re-express in terms of χc(u′) as

ρU = ρ0U0 + (γ − 1)−1[ρ0 vu − ρχc
(
u′)], (9)

and then solving for χc(u′), we obtain the associated ODE of the present study, specifically,

A
(
u′)2 − ηv−1(v − u)u′ = u

v

[(
v2 − c2

0

) − βvu
]
. (10)

Here, ρ has been eliminated from the LHS using Eq. (A.4); η = μL/ρ0 is the kinematic longitudinal viscosity coefficient, where the 
constant ρ0 denotes the value of the mass density ahead of the shock; we have used the fact that β = (γ + 1)/2 in the case of perfect 
gases, where β(> 1) is the coefficient of nonlinearity; and we note that the square of the adiabatic sound speed ahead of the shock is 
given by c2

0 = γ (γ − 1)U0, where the constant U0 denotes the value of the specific internal energy ahead of the shock [11, p. 66].
Seeking integral curves in the form of kinks [1], we impose the asymptotic conditions

lim
y→∓∞ u(y) = {up,0}, (11)

3 The mathematical treatment of this problem for a dissipative gas can be traced back to an 1870 paper by Rankine [14] in which he examined the case of a gas whose 
only loss mechanism is its ability to conduct heat; see also Lamb [7, Art. 284] and Lord Rayleigh [15].

4 Ref. [11, Eq. (12)] contains a misprint; see Appendix A.
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