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The analytical solutions of the Dirac equation with the spin symmetry for the improved Manning–
Rosen potential energy model have been explored. We present the bound state energy equation and 
the corresponding upper and lower radial wave functions. The degeneracy between the two states of the 
spin doublet for the nucleus motions of the X1�+ state of SiF+ molecule has been observed. When the 
vector potential is equal to the scalar potential, the relativistic effect of the nuclear motion leads to a 
little decrease in the vibrational energies, while to an increase in those if the vector potential is greater 
than the scalar potential.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

To achieve very accurate rovibrational energy level structures of 
molecules by using the quantum mechanical methods, one must 
consider a variety of small physical effects arising from a fully 
relativistic treatment, non-Born–Oppenheimer approximation, and 
quantum electrodynamics [1]. By working on a relativistic descrip-
tion of the electronic motion and treating the nuclear motion 
within the framework of nonrelativistic quantum mechanics, some 
authors [2–5] carried out the all-electron Dirac–Coulomb calcu-
lations for bond lengths, dissociation energies, and harmonic vi-
bration frequencies of dihalogens, hydrogen halides, interhalogens, 
and HX (X = Cl, Br and I) and IZ (Z = F, Cl and Br) diatomic 
molecules. The inclusion of relativity leads to a weakening of the 
bond, giving a decrease in the calculated harmonic frequencies and 
dissociation energies [2–5]. However, as far as we know, one has 
not reported the effects of the nuclear relativistic motion on the 
rovibrational energies for real diatomic molecules with the spin
symmetry and pseudo-spin symmetry.

Within the framework of the Dirac equation, Ginocchio [6–8]
found that the spin symmetry occurs when the difference poten-
tial between the vector potential V (r) and scalar potential S(r) is 
a constant (i.e., V (r) − S(r) = constant), and the pseudo-spin sym-
metry occurs when the sum potential of the vector potential V (r)
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and scalar potential S(r) is a constant (i.e., V (r) + S(r) = constant). 
The spin symmetry concept [9] is relevant for mesons [10]. The 
pseudo-spin symmetry concept [11] in nuclear theory refers to 
quasi-degeneracy of single-nucleon doublets and can be character-
ized with the non-relativistic quantum numbers. The spin symme-
try is from the nuclear structure. By defining the reduced mass as 
μ = m1m2/(m1 + m2), where m1 and m2 are two nuclei masses 
of a diatomic molecule, Zhang et al. [12] incorporated the con-
cepts of the spin symmetry and pseudo-spin symmetry to the 
diatomic molecular case, and represented the interaction poten-
tial of two nuclei by employing a diatomic molecule potential 
energy model. By using this scheme, some authors have investi-
gated the spin symmetry and pseudo-spin symmetry solutions of 
the Dirac equations with some typical diatomic molecule poten-
tial models, such as the Kratzer potential [13], Morse potential 
[14], Pöschl–Teller potential [15–17], Rosen–Morse potential [18], 
and Manning–Rosen potential [19–22]. The Manning–Rosen poten-
tial has been used to describe the diatomic molecular vibrations 
[23–27]. By using the Pekeris-like approximation [28] to the cen-
trifugal term and pseudo-centrifugal term, Wei and Dong [19,20]
investigated approximately the bound state solutions of the Dirac 
equation with the original Manning–Rosen potential model under 
the conditions of the spin symmetry and pseudo-spin symmetry. In 
terms of the conventional Greene–Aldrich approximation scheme 
[29] to deal with the centrifugal term and pseudo-centrifugal 
term, Taşkin [21] studied approximately the analytical solutions 
of the Dirac equation for the Manning–Rosen potential with the 
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spin–orbit coupling term. By using the improved Greene–Aldrich 
approximation scheme [30] to deal with the centrifugal term and 
pseudo-centrifugal term, Chen et al. [22] solved approximately the 
Dirac equation with the Manning–Rosen potential for the arbitrary 
spin–orbit quantum number. In these works, the authors did not 
reported quantitative tests on actual relativistic vibrational ener-
gies for real diatomic molecules.

In 1933, Manning and Rosen [23] proposed a potential function 
for diatomic molecules,

UMR(r) = h2

8μπ2b2

[
β(β − 1)e−2r/b

(1 − e−r/b)2
− Ae−r/b

1 − e−r/b

]
, (1)

where β and A are two dimensionless parameters, parameter b is 
related to the range of the potential and has dimension of length. 
In 2012, Wang et al. [31] proposed a convenient form for the orig-
inal expression (1) of the Manning–Rosen potential function,

UMR(r) = De

(
1 − eαre − 1

eαr − 1

)2

, (2)

where α = 1/b, De is the dissociation energy of a diatomic 
molecule, and re is the equilibrium bond length. Here, one term 
De has been added to the original Manning–Rosen potential en-
ergy function (1). This change only produces an energy of zero 
at the potential minimum, i.e. UMR(re) = 0, and does not affect 
the physical properties of the Manning–Rosen potential. Potential 
(2) is the same as a simple diatomic molecular potential pro-
posed by Deng and Fan [32] in 1957. It has been found that the 
Manning–Rosen potential, Schiöberg potential [33] and Deng–Fan 
potential are the same solvable empirical potential energy func-
tion for diatomic molecules [31]. With the help of the Deng–Fan 
potential, Rong et al. [34] investigated the F-H stretching motion 
in HF molecule. Nyeo and Yang [35] investigated the statistical 
mechanics of the quasi-one-dimensional system of DNA with the 
Deng–Fan potential for the interstrand hydrogen bonds of nu-
cleotide pairs. By employing the Deng–Fan potential, Zhang et al. 
[36] calculated the rotational transitions for HF molecule. Recently, 
one of the present authors and collaborators [37–40] investigated 
the bound state solutions of the Klein–Gordon equation and the 
Schrödinger equation with the improved Manning–Rosen empirical 
potential energy model, and studied the vibrational energy spectra 
for the a3�+

u state of 7Li2 molecule. The improved Manning–Rosen 
potential model can well reproduce the experimental Rydberg–
Klein–Rees (RKR) [41–43] potential curve for the a3�+

u state of 
7Li2 molecule [44].

In this Letter, we attempt to study the bound state solutions 
of the Dirac equation with the improved Manning–Rosen potential 
model within the framework of the spin symmetry. In the pres-
ence of the inclusion of relativity, we investigate the discrepancies 
between the nonrelativistic and relativistic vibrational energies for 
the X1�+ state of SiF+ ion molecule.

2. Dirac equation

In spherical coordinates, the Dirac equation with both scalar po-
tential S(r) and vector potential V (r) is given by{

cα · p + β
[
Mc2 + S(r)

]}
Ψ (r, θ,ϕ) = [

E − V (r)
]
Ψ (r, θ,ϕ), (3)

where E is the relativistic energy of the quantum system, M is 
the mass of the system, c denotes the speed of light, h̄ = h/2π , h
denotes the Planck constant, p is the momentum operator, α and 
β are the 4 × 4 Dirac matrices,

p = −ih̄∇, α =
[

0 σ i

σ i 0

]
, β =

(
I 0
0 −I

)
, (4)

where I denotes the 2 × 2 unit matrix, and σ i are three-vector 
Pauli matrices, i.e.,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (5)

where i = √−1. In the presence of a spherical field, the Dirac 
Hamiltonian commutes with the total angular momentum oper-
ator J and the spin–orbit coupling operator K = −β(σ · L + 1), 
where L is the orbital angular momentum. The eigenvalues of K are 
κ = J > 0 and κ = −( J + 1) < 0 for unaligned spin ( j = J − 1/2) 
and aligned spin ( j = J + 1/2), respectively, where κ denotes the 
spin–orbit quantum number, j denotes total angular momentum 
quantum number, and J denotes rotational quantum number for 
a diatomic molecule system. One can take (H, K , J 2, J z) as the 
complete set of the conservative quantities, and classify the spinor 
wave functions according to the spin–orbit quantum number κ and 
vibrational quantum number v in the following forms,

Ψvκ = 1

r

[
F vκ (r)Y J

jm(θ,ϕ)

iG vκ (r)Y J̃
jm(θ,ϕ)

]
, (6)

where the upper and lower components F vκ (r) and G vκ (r) of 
the Dirac spinor are real square-integral functions, Y J

jm(θ, ϕ) and 

Y J̃
jm(θ, ϕ) are the spherical harmonic functions, and m is the pro-

jection of the total angular momentum on the third axis.
For a diatomic system, the rest mass M can be regarded as the 

reduced mass μ of the diatomic molecule. Substituting Eq. (6) into 
Eq. (3) leads us to obtain two coupled differential equations for the 
upper and lower spinor components F vκ (r) and G vκ (r) as follows:(

d

dr
+ κ

r

)
F vκ (r)

= 1

h̄2c2

[
μc2 + E vκ − (

V (r) − S(r)
)]

G vκ (r), (7)(
d

dr
− κ

r

)
G vκ (r)

= 1

h̄2c2

[
μc2 − E vκ + (

V (r) + S(r)
)]

F vκ (r). (8)

Under the condition of the spin symmetry, i.e., the difference po-
tential Δ(r) = V (r) − S(r) = Cs = constant, we can eliminate the 
lower component G vκ (r) and obtain a second-order differential 
equation satisfied by the upper component F vκ (r) from Eqs. (7)
and (8),(

−h̄2c2 d2

dr2
+ κ(κ + 1)h̄2c2

r2

+ (
μc2 + E vκ − Cs

)(
V (r) + S(r)

))
F vκ (r)

= (
E2

vκ − μ2c4 + Cs
(
μc2 − E vκ

))
F vκ (r). (9)

The lower component G vκ (r) is obtained from Eq. (7),

G vκ (r) = h̄2c2

μc2 + E vκ − Cs

(
d

dr
+ κ

r

)
F vκ (r). (10)

We consider the bound state solutions that demand the upper and 
lower spinor components F vκ (r) and G vκ (r) satisfy the regularity 
conditions: Fnκ (0) = Gnκ (0) = 0 and Fnκ (∞) = Gnκ (∞) = 0.

Under the condition of the exact spin symmetry, i.e., Cs = 0, 
V (r) + S(r) = 2V (r), Eq. (9) becomes the following form(
−h̄2c2 d2

dr2
+ κ(κ + 1)h̄2c2

r2
+ 2

(
μc2 + E vκ

)
V (r)

)
F vκ (r)

= (
E2

vκ − μ2c4)F vκ (r). (11)
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