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The electronic structure of a single-layer graphene with a periodic Fermi velocity modulation is investi-
gated by using an effective Dirac-like Hamiltonian. In a gapless graphene or in a graphene with a constant 
energy gap the modulation of the Fermi velocity, as expected, only changes the dispersion between en-
ergy and moment, turning the minibands narrower or less narrow than in the usual graphene depending 
on how the Fermi velocity is modulated and the energy gap remains the same. However, with a modu-
lated energy gap it is possible to control the energy gap of graphene by Fermi velocity engineering. This 
is based on a very simple idea that has never been reported so far. The results obtained here reveal a new 
way of controlling the energy gap of graphene, which can be used in the fabrication of graphene-based 
devices.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, a one-atom thick layer of carbon atoms arranged in 
a hexagonal structure, has attracted a great research interest since 
its first successful experimental fabrication in 2004 [1]. Such in-
terest is due, for instance, to its intriguing physical properties and 
the wide range of potential applications [2–4]. One of the most 
interesting features of graphene is that its low-energy electronic 
structure can be described by using a Dirac-type Hamiltonian. As 
a consequence, due to the fact that there is no energy gap in its 
electronic structure, the Klein tunneling [5,6] prevents charge car-
riers in graphene from being confined by an electrostatic potential. 
Thus, in order to use graphene in electronic devices, different ways 
of opening and controlling an energy gap in its electronic structure 
have been investigated and it remains a subject of great interest.

An energy gap can be induced in graphene, for instance, by sub-
strate. A SiC substrate leads to the opening of a gap of ≈0.26 eV
in graphene [7], while a hexagonal boron nitride (h-BN) substrate 
induces a gap of the order of 30 meV which depends on the 
commensurability between the two lattices [8,9]. It is also pos-
sible to open and control an energy gap in graphene by doping, 
for instance, with boron [10,11] or nitrogen [12] atoms as well as 
by strain engineering [13–15]. Besides, it is possible to suppress 
the Klein tunneling creating confined states in graphene with a 
spatially modulated gap [16–19], whereas the band structure of 
graphene can be engineered by applying an external periodic po-
tential [20–23]. Even though different ways of controlling the en-
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ergy gap in graphene have already been reported, in this paper we 
show the possibility of doing this with a modulated Fermi velocity.

The Fermi velocity plays an important role in the study of a 
material, since it carries information on a variety of fundamen-
tal properties. The potential application of graphene in electronic 
devices has motivated the examination of its Fermi velocity engi-
neering. In contrast to a Galilean invariant theory such as Fermi 
Liquids, the Fermi velocity in graphene increases when electron–
electron interactions increase, since graphene is described by an 
effective field theory that is Lorentz invariant [24]. By changing 
the carrier concentration in graphene the Fermi velocity can reach 
≈3 × 106 m/s [25], whereas with weak electron–electron interac-
tions the Fermi velocity is expected to be 0.85 × 106 m/s [26]. 
A modulation of the Fermi velocity can be obtained in graphene, 
for instance, by placing metallic planes close to the graphene sheet, 
which will turn electron–electron interactions weaker and, conse-
quently, modify the Fermi velocity [27,28]. In this way, depend-
ing on how the metallic planes are arranged, it is possible to 
create regions with different Fermi velocity in graphene, thereby 
forming velocity barriers. A velocity barrier does not suppress the 
Klein tunneling in a perpendicular incidence of electrons and the 
transmittance is always equal to unity [16]. However, in a non-
perpendicular incidence the electrons can be confined and the 
bound states serve as guide modes. The investigation of the trans-
port properties of graphene with velocity barriers was done in 
Refs. [27–33].

In this paper we investigate the electronic structure of a single-
layer graphene with a periodic velocity barrier by using an effec-
tive Dirac Hamiltonian. In contrast to the previous investigations, 
where the transport properties were analyzed, we will study the 
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Fig. 1. Schematic diagram of a graphene sheet deposited on a heterostructured sub-
strate composed of two different materials which can open different energy gaps 
in different regions of the graphene sheet inducing a periodic modulation of the 
energy gap in graphene. Metallic planes are placed close to graphene sheet which 
induce a periodic velocity barrier. The period of the graphene superlattice is a + b.

electronic properties and analyze the effects of a modulated Fermi 
velocity in the electronic band structure of graphene. In the case of 
a graphene with a constant energy gap, which includes the case of 
a gapless graphene, the periodic Fermi velocity changes only the 
shape of the electron and hole minibands. However, considering 
both an energy gap and a Fermi velocity modulations, it is pos-
sible to control the energy gap in graphene by tuning the Fermi 
velocity, which is an idea that can be used in the fabrication of 
graphene-based devices.

The paper is organized as follows. In Section 2 we obtain the 
dispersion relation for a single-layer graphene with a piecewise 
constant periodic energy gap and Fermi velocity by using an effec-
tive Dirac Hamiltonian. We discuss how this system can be realized 
experimentally. In Section 3 we analyze the electronic band struc-
ture of the system. We show that it is possible to control the 
energy gap in graphene by a modulated Fermi velocity. We explain 
in which conditions it happens. The paper is summarized and con-
cluded in Section 4.

2. Model

The effective two-dimensional Dirac Hamiltonian for a single-
layer graphene with a position dependent energy gap and Fermi 
velocity is written as

H = −ih̄
(√

v F (x)σx∂x

√
v F (x) + v F (x)σy∂y

) + �(x)σz, (1)

where �(x) is half of the graphene energy gap, σi are the Pauli 
matrices acting on the pseudospin related to the two graphene 
sublattices and v F (x) is the Fermi velocity. The first term on the 
Hamiltonian above is modified in relation to the usual Dirac oper-
ator for graphene in order to have a Hermitian operator [16]. We 
are considering that the Fermi velocity and the energy gap change 
only in the x direction. In Fig. 1 there is a schematic diagram of 
the graphene with a periodic energy gap and Fermi velocity. The 
graphene is deposited on a heterostructured substrate composed 
of two different materials, which can open different energy gaps in 
different regions of the graphene sheet that we will denote by �1
and �2. Metallic planes are placed close to graphene sheet which 
induce a periodic velocity barrier. The Fermi velocity in each region 
will be denoted by v1 and v2. The period of the system is a + b.

The Dirac equation is given by

Hψ(x, y) = Eψ(x, y) (2)

where ψ(x, y) is a two-component spinor that represents the two 
graphene sublattices. Writing

ψ(x, y) = e−iky yψ(x) (3)

and defining 
√

v F (x)ψ(x) = φ(x), the Dirac equation becomes

−ih̄v F (x)σx∂xφ(x) + [
�(x)σz − h̄kyσy

]
φ(x) = Eφ(x), (4)

which can be written as

i
dφ(x)

dx
= M(x)φ(x), (5)

where

M(x) =
(

iky
−E−�(x)

h̄v F (x)
−E+�(x)

h̄v F (x) −iky

)
. (6)

The solution of Eq. (5) is given by

φ(x) = P exp

(
−i

x∫
x0

dx′M
(
x′))φ(x0), (7)

where P is the path ordering operator, which places smaller values 
of x to the right [34,35]. M(x) is a piecewise constant function, so 
if x and x0 belong to the space-homogeneous region, the solution 
above can be simplified as

φ(x) = Λ(x − x0)φ(x0), (8)

where Λ(x − x0) = exp[−i(x − x0)M(x)]. Expanding this exponen-
tial, one can write

Λ(x − x0) =
(

cosα + ky
k(x) sinα −i sinα −E−�

h̄v F (x)k(x)

−i sinα −E+�
h̄v F (x)k(x) cosα − ky

k(x) sinα

)
, (9)

where α = (x − x0)k(x) and k(x) = ([E2 − �2]/h̄2 v2
F − k2

y)
1/2. 

The wave function satisfies the Bloch theorem, so ψ(a + b) =
exp[ikx(a + b)]ψ(0), where kx is the Bloch wave vector. From 
Eq. (8) one can write φ(a + b) = Λ(a + b)φ(0), which is equivalent 
to ψ(a + b) = Λ(a + b)ψ(0), where Λ(a + b) = Λ(b)Λ(a). Compar-
ing this with the Bloch theorem one can see that

det
[
Λ(a + b) − exp

[
ikx(a + b)

]] = 0, (10)

which yields the relation 2 cos kx(a + b) = Tr[Λ(a + b)]. Therefore, 
the dispersion relation is given by

cos(kxl) = cos(k1a) cos(k2b)

+ k2
yh̄2 v1 v2 − E2 + �1�2

h̄2 v1 v2k1k2
sin(k1a) sin(k2b), (11)

where k1 = ([E2 −�2
1]/h̄2 v2

1 −k2
y)

1/2, k2 = ([E2 −�2
2]/h̄2 v2

2 −k2
y)

1/2

and we have defined l = a +b. One can note that with �1 = �2 = 0
and v1 = v2, Eq. (11) becomes the liner dispersion relation for 
a single-layer graphene. The left-hand side of Eq. (11) limits the 
right-hand side to the interval (−1, 1). Thus, there will be allowed 
and forbidden values for the energy, which implies in the appear-
ance of energy bands with gaps.

3. Electronic Structure

With the dispersion relation, let us now investigate the elec-
tronic structure of the system. In what follows, we will consider 
a constant period for the graphene superlattice equal to 60 nm, 
which is an appropriate value for graphene. We will consider also 
that a = b = 30 nm.

In Fig. 2 the dispersion relation (11) is plotted for �1 = �2, 
v1 = 1 × 106 m/s and v2 = 0.5 × 106 m/s (red line), v2 = 1 ×
106 m/s (black line) and v2 = 3 × 106 m/s (blue line). In Fig. 2(a) 
we consider a gapless graphene, whereas in Fig. 2(b) we consider a 
gapped graphene with an energy gap equal to 30 meV. One can see 
that the periodic modulation of the Fermi velocity does not change 
the energy gap in a graphene sheet with a constant energy gap. 
In this case, a periodic Fermi velocity modulation only modifies 
the electron and hole minibands which could be narrower or less 
narrow than in the usual graphene. Therefore, it is the same as
considering a constant Fermi velocity, changing only its value. This 
explains the fact that the electronic band structure of graphene 
with a periodic Fermi velocity has not been investigated so far. As 
it was already mentioned, since several fundamental properties of 
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