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We theoretically investigate the manipulation of electron-Kondo transport through a single-quantum 
dot (QD) two-electrode device by introducing a side-coupled graphene sheet. It is shown that with 
increase of coupling strength between the QD and the zero-potential graphene sheet, the anti-bias voltage 
capability of the QD–electrode Kondo resonance is improved obviously. This causes a high-conductance 
QD–electrode channel to be opened up for electron transport within a wide bias voltage range. Moreover, 
the conductance/current of the Kondo channel can be accurately controlled by adjusting the potential of 
the graphene sheet. These results may be useful for the observation of nonequilibrium Kondo effect and 
the design of high-conductance control device.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Very recently, quantum dot (QD)–graphene composites have 
been successfully fabricated [1–4]. Graphene [5,6], a single-layer 
two-dimensional material, has high electron conductivity and mo-
bility, which are very useful properties in nanotechnology. How-
ever, the fact of zero-bandgap limits its applications in nanoelec-
tronics because a finite bandgap is an essential expectation for the 
“on/off” operations in the electron devices. In contrast, semicon-
ducting QD has extensive applications [7–10] based on its special 
quantum size effects and discrete energy spectrums. Naturally, the 
QD–graphene composite is a good candidate since it combines the 
advantages of two materials. Therefore, it is necessary to known 
precisely the QD–graphene interplay influence on electron trans-
port behaviors in various QD–graphene composite systems.

In some typical QD–electrode devices [11–15], The Kondo reso-
nance provides an excellent channel to electron transport through 
the QD from the external electrodes in the low temperature. Con-
ductance of the Kondo channel can reach a unitary limit, i.e., 
G = 2e2/h. However, this Kondo channel is sensitive exceedingly 
to the bias voltage V across the QD. For a small bias voltage, its 
conductance falls off with V 2 because the bias voltage opens up a 
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Fig. 1. (Color online.) Scheme of the model system: A quantum dot is sandwiched 
in the source (L) and drain (R) electrodes and side-coupled to the graphene sheet 
with the coupling strength tc . The potential of the graphene can be adjusted by the 
gate voltage applied to its substrate.

phase space for non-Kondo transitions, which leads to a powerful 
suppression of the Kondo resonance [16,17]. Therefore, the im-
provement of anti-bias voltage capability of the Kondo resonance 
should be an important and interesting topic in nanoelectronics 
since it affects the conductivity of the QD devices. However, to our 
knowledge, less attention has been paid to it till now. Based on 
the successful fabrication of the QD–graphene composites, we pro-
pose a scheme to improve this capability here, and accordingly to 
enhance the conductivity of the QD devices.

In this letter, using the slave boson (SB) mean field approxima-
tion (MFA) and the Green’s function technology, by introducing a 
side-coupled graphene sheet, we theoretically investigate the ma-
nipulation of electron-Kondo transport through a strongly corre-
lated QD from two metal electrodes as shown in Fig. 1. The central 
part of this system is a QD device which consists of a QD and two 
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metal electrodes. The side-coupled graphene sheet is introduced as 
an external accessory to manipulate electron transport through the 
QD device. According to the Tersoff–Hamann approach [18,19], the 
QD–graphene coupling strength is accurately adjustable by varying 
their distance. We show that when the potential of the graphene 
sheet is fixed at the Fermi energy of two metal electrodes, with in-
crease of the QD–graphene coupling strength, the Kondo resonance 
level in the QD device is greatly broadened. This behavior im-
proves the anti-bias voltage capability of the QD–electrode Kondo 
resonance, and opens up a high conducting channel for electron 
transport through the QD device under a rather larger bias voltage 
applied to two metal electrodes. The differential conductance pos-
sesses a high ridge, closing to 2e2/h, within a rather wider range 
of bias voltage. This is an interesting property because it allows us 
to observe experimentally the nonequilibrium Kondo effect [16,17]
at a rather large bias voltage. Moreover, the conductance/current in 
the QD device can be accurately controlled by adjusting the gate 
voltage applied to the graphene sheet. Our results may be useful 
for the design of high-conductance control device [20–23].

2. Hamiltonian and method

In our considered composite system, the Hamiltonian for the 
QD device is described by a two-fold (N = 2) degenerated one-
impurity Anderson Hamiltonian. In limit of the intra-dot Coulomb 
repulsion U → ∞, it can be read as

H1 =
∑
kα,σ

εkα,σ c†
kα,σ ckα,σ +

∑
σ

ε0 f †
σ fσ

+ 1√
N

∑
kα,σ

(
Vkαc†

kα,σ b† fσ + H.c.
)

+ λ

(
b†b +

∑
σ

f †
σ fσ − 1

)
, (1)

where the first term describes two metal electrodes in which 
c†

kα,σ (ckα,σ ) is electron creation (annihilation) operator with wave 
vector k and spin σ = ±1 in the left (α = L) or right (α = R)

side and εkασ is the corresponding single-electron energy. The sec-
ond term stands for the Hamiltonian of the QD with energy ε0
in the SB representation [24,25], in which electron creation (anni-
hilation) operator is expressed by f †

σ b(b† fσ ), where b( f †
σ ) is the 

auxiliary boson (pseudo-fermion) operator for the empty (singly 
occupied) state of the QD. The third term is electron tunneling 
from the electrodes to the QD with relevant matrix element Vkα . 
The last term with a Lagrange multiplier λ represents a constraint 
of Σσ f †

σ fσ + b†b = 1 for the QD to forbid electronic double occu-
pancy under the limitation U → ∞.

The Hamiltonian for the QD–graphene coupling part (including 
the graphene sheet) can be written as

H2 =
∑

kx,ky ,σ

(u + εkxky )d
†
kx,ky ,σ dkx,ky ,σ

+ 1√
N

∑
kx,ky ,σ

tc
(

f †
σ bdkx,ky ,σ + H.c.

)
(2)

with the low-energy spectrum of the graphene sheet

εkxky = ±t
√

1 − 4 cos(
√

3ky/2) cos(3kx/2) + 4 cos2(
√

3ky/2),

(3)

in which d†
kx,ky ,σ (dkx,ky ,σ ) is π -electron creation (annihilation) op-

erator of graphene sheet and the potential u of the sheet can be 
varied by adjusting the gate voltage applied to its substrate [see 

Fig. 1]. t is the nearest-neighbor π -electron hopping integral and tc

is the QD–graphene coupling strength. Therefore, the total Hamil-
tonian of our model system is H = H1 + H2.

We solve the total Hamiltonian H by employing MFA, in 
which SB operator b(t) is replaced by its expectation value 
b̃ = 〈b(t)〉/√N , i.e., neglecting the fluctuation around the aver-
age 〈b(t)〉/√N . The MFA is exact for describing the spin fluctu-
ation (Kondo regime) at low temperatures. Employing the similar 
technology as that used in Refs. [26,27], the unknown parame-
ters b̃ and λ can be obtained by resolving a set of equations 
under the conditions of minimal energy ∂〈H(λ, ̃b)〉/∂λ = 0 and 
∂〈H(λ, ̃b)〉/∂b̃ = 0. Employing the equation of motion approach of 
the Green’s function, one can also obtain the full retarded Green’s 
function of the QD

Gr
f f ,σ (ω) = [

ω − εQD − b̃2
c t2

c �[
gr

G,σ (ω)
]

+ i
(
Γ σ

L + Γ σ
R + Γ σ

G

)]−1
(4)

and its density of states (DOS) ρQD(ω) = −2b̃2	[Gr
f f ,σ (ω)]/π . 

Here, εQD = ε0 + λ is the Kondo resonance level in the QD and 
Γ σ

L(R) = b̃2Γ σ
0,L(R) is the width of QD–electrode Kondo resonance 

level [25], where Γ σ
0,α = πΣkσ Vkα V ∗

kαδ(ω − εkα,σ ) is the QD–
electrode correlated function, containing all interference paths of 
the metal L(R)-electrode. In the wide band limitation with the 
energy interval of −D < ω < D , the total correlated function 
Γ σ

0 = Γ σ
0L + Γ σ

0R is taken as a constant. The width of QD–graphene 
Kondo resonance level is taken as Γ σ

G = b̃2Γ
0,σ

G , where Γ
0,σ

G =
−t2

c 	[gr
G,σ (ω)] is the QD–graphene correlated function with the 

retarded Green’s function of the isolated graphene sheet gr
G,σ . It 

is worth noting that Γ 0,σ
G is the function of graphene-potential u, 

which can be adjusted by a gate voltage applied to it [see Fig. 1]. 
For preciseness and simplicity, we adopt Peres et al.’s method [28,
29] to express the retarded Green’s function gr

G,σ , which allows 
us to take into account the nonlinear bands of the graphene and 
not only its linear ones around the Dirac point (potential u) in our 
calculation. Its imaginary part reads

	[
gr

G,σ (ω)
] ∼= −

[
ω − u√

3t2
+ (ω − u)3

3
√

3t4
+ 5(ω − u)5

27
√

3t5

]
, (5)

and real part is taken as

�[
gr

G,σ (ω)
] = P1(ω, u) + P2(ω, u) ln

(ω − u)2

D2
c − (ω − u)2

(6)

with the polynomial functions

P1(ω, u) = −ω − u

3t2
− 5

27t4

[
(ω − u)

2
D2

c + (ω − u)3
]
,

P2(ω, u) = ω − u

D2
c

+ (ω − u)3

3t2 D2
c

+ 5

27D2
c t4

(ω − u)5. (7)

Here, the cut-off energy is chosen as D2
c = √

3πt2.
In this work, our topic is to investigate the manipulation of 

the election-Kondo transport through the QD device by applying 
a side-coupled graphene sheet, which can be verified by a low-
temperature current from L-electrode to R-electrode via the QD 
[30]

ILR = e

h

∑
σ

eV LR/2∫
−eV LR/2

dωT σ
LR(ω) (8)

and its linear conductance
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