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The conserved Kuramoto–Sivashinsky (cKS) equation describes the coarsening of an unstable solid surface 
that conserves mass and that is parity symmetric. When parity is a broken symmetry, a nonlinear third-
order spatial derivative term must in general be included in the equation of motion. We show that the 
effects of this term can be dramatic. Numerical integrations reveal that if its coefficient is sufficiently 
large, a nearly constant speed “train of kinks” develops and coarsening appears to cease. An individual 
kink exhibits scaling behavior as it grows deeper and narrower until the fourth-order cKS nonlinearity 
averts a finite-time singularity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nearly flat solid surfaces can become unstable against the for-
mation of ripples, mounds or other structures that have a char-
acteristic length scale that is much larger than the inter-atomic 
spacing. In these circumstances, a continuum equation of motion 
governs the surface dynamics. Provided that it does not develop 
overhangs, the surface may be described by specifying its height 
h(x, y, t) above all points (x, y) in the x–y plane at time t .

In many cases, the total mass is conserved because material is 
not added to or removed from the solid. Matter may move over the 
solid surface or within a near-surface region, however, and this can 
lead to very rich and complex dynamics. Examples of problems of 
this kind include diffusion on solid surfaces [1], electromigration-
induced drift on the surface of a conductor [2,3] and the dynamics 
of aeolian sand dunes [4,5]. A less familiar example is the ripples 
that can form when a solid surface is bombarded with a broad ion 
beam at oblique incidence [6]. If the ion energy is high enough, 
electronic rather than nuclear stopping is predominant, and sput-
tering is negligible. In this regime, the mass of solid is conserved 
but ion-induced plastic flow occurs within a thin layer at the sur-
face of the solid [7].

A generic continuum model that conserves mass and that dis-
plays an instability is the conserved Kuramoto–Sivashinsky (cKS) 
equation
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∂th = −∂2
x h − 1

2
∂4

x h − ∂2
x (∂xh)2. (1)

Note that we may assume without loss of generality that the spa-
tial average of h is zero and that it has been assumed that h is in-
dependent of y for the sake of simplicity. The cKS equation is usu-
ally written without the coefficient 1

2 before the fourth-derivative 
term, but we prefer this form because the maximally unstable 
mode has wavelength 2π rather than 2

√
2π . The cKS equation 

models the step meandering instability on a surface characterized 
by the alternation of terraces with different properties [8]. It also 
describes the growth of an amorphous thin film by physical vapor 
deposition [9,10]—in this case, conserved dynamics are obtained 
by transforming to a frame that translates upward with constant 
velocity.

The behavior of the solutions to the cKS equation is now 
well understood [8,11–13]. A family of periodic steady-state so-
lutions exists; these consist of nearly parabolic convex segments 
(“humps”) that join at “kinks”. These kinks are not discontinu-
ities in ∂xh, but are instead relatively narrow regions where ∂2

x h is 
positive. For generic nominally flat initial conditions, a nearly peri-
odic pattern with wave number k ∼ 1 emerges at early times, but 
at longer times coarsening occurs: kinks merge and the average 
size of the parabolic segments grows in time. The cKS equation is 
viewed as a simple, paradigmatic model of coarsening in spatially 
extended nonlinear systems as a consequence. Several theoreti-
cal analyses as well as numerical integrations indicate that the 
characteristic length of the humps grows as t1/2 and that the root-
mean-square surface height grows as t1 [8,11–13]; since most of 
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the surface is composed of nearly parabolic segments, the latter 
result is a natural consequence of the former.

In this paper, we will study a generalization of the cKS equation 
in which parity is a broken symmetry. The x → −x symmetry is 
broken by the applied electric field in the case of electromigration, 
by the wind in the case of aeolian dunes, and by the obliquely-
incident ion beam in the case of ion-induced ripple formation. The 
symmetry could be broken in the growth of amorphous thin films 
by employing an obliquely-incident flux of atoms rather than a 
normally-incident one. In each case, an external driving force elim-
inates the x → −x symmetry.

When there is no x → −x symmetry, terms proportional to ∂3
x h

and ∂x(∂xh)2 must in general be added to the right-hand side of 
Eq. (1). The reason for this is that the ∂3

x h and ∂x(∂xh)2 are of 
lower order in ∂x than ∂4

x h and ∂2
x (∂xh)2. Thus, we write

∂th = −∂2
x h − 1

2
∂4

x h − ∂2
x (∂xh)2 + α∂x(∂xh)2 + γ ∂3

x h ; (2)

note that there is no need to add a term proportional to ∂xh
because such a term can be removed by a Galilean transforma-
tion. Eq. (2), with an additional nonlinear term ∂x(∂xh)3, has been 
shown to model aeolian sand dunes [4,5]. If the hydrodynamic 
model of ion-induced pattern formation is simplified using the lu-
brication approximation and if the ion energy is high enough that 
sputtering can be neglected, Eq. (2) results [14].1 In addition, for 
α = 0, it describes deposition and electromigration on a vicinal 
surface [2]. In this case, where only the linear third-order term is 
added to the cKS equation, the dynamics of the surface are hardly 
affected: there is overall drift, with the direction depending on the 
sign of γ , but coarsening takes place with the same power laws as 
for γ = 0 [2,4].

In this paper, we will study the solutions of Eq. (2), which we 
will refer to as the parity broken conserved Kuramoto–Sivashinsky 
(pb–cKS) equation. We find through direct numerical integrations 
(Section 2) that the nonlinear third order term can have a dramatic 
effect on the character of the solutions. In particular, it seems to 
drive a transition between qualitatively different long-time behav-
iors. There is a large region in the α–γ parameter space in which 
the solutions do not appear to exhibit coarsening, but instead be-
come aperiodic traveling waves as t grows large. These traveling 
waves exhibit kinks, just like the solutions to the cKS solutions; 
but, unlike the latter, the depth and curvature of the kinks sat-
urate almost as soon as the nonlinear effects become significant. 
Section 3 presents a scaling analysis of the development of kinks 
which is in good agreement with the numerical integrations when 
α is large. In Section 4 we conclude with a summary of our find-
ings.

2. Numerical method and results

A Galerkin method is employed in the numerical calculations. 
We apply periodic boundary conditions on the interval 0 ≤ x ≤
2πν and write h(x, t) as a finite trigonometric series, that is,

h(x, t) =
N∑

n=1

[
an(t) cos(nx/ν) + bn(t) sin(nx/ν)

]
. (3)

This leads to a set of nonlinear first order differential equations for 
the coefficients. The n = 0 term is omitted because conservative 
dynamics implies da0/dt = 0, and vertical translation invariance 
implies that a0 does not appear in any of the equations for the 

1 The effect of the nonlinear term α∂x(∂xh)2 has also been studied for ion en-
ergies low enough that nuclear stopping is predominant [15]. In the low energy 
regime, sputtering is not negligible and the dynamics are not conservative.

Fig. 1. Snapshots of h(x, t) for α = 0.5 (left column), 1.0 (middle column) and 2.0 
(right column) at several times. The x values in the plots cover the entire domain 
(0, 40π). The vertical scales are the same for all plots in a row.

other coefficients; thus a0 can be taken to be identically zero. The 
choice of wave number cutoff N is described below. We may as-
sume without loss of generality that α ≥ 0 because if it is not, we 
may make the replacement x → −x; the parameter γ can take on 
any real value.

Numerical integrations were carried out with the Livermore 
solver [16] using the analytic Hessian, wrapped by SciPy [17]. Ini-
tial conditions were drawn from random Gaussian distributions for 
the Fourier coefficients with standard deviations sufficiently small, 
typically 〈a2

n〉1/2 = 〈b2
n〉1/2 = 0.1/N1/2, so that the system was in 

the linear regime. The N values we typically used were on the or-
der of hundreds, and we spot checked for finite-N artifacts. Most 
of the numerical integrations we report were carried out with ν
in the range of 20 to 40, and were thus comparable in effective 
size to direct numerical integrations of the cKS equation in the lit-
erature [13]. For all parameter values (α, γ , ν) we have explored, 
the finite-time singularity associated with the parity-breaking non-
linear term (discussed in Section 3 below) was suppressed by the 
cKS nonlinearity—but the number of function and Hessian evalu-
ations per unit of time that the integration algorithm settled on 
varied by four orders of magnitude, depending on the parameter 
values. When singularities were encountered in numerical integra-
tions, they were found to be artifacts which could be eliminated 
by increasing N and/or reducing the initial time step.

We begin the presentation of our numerical investigations by 
setting γ = 0, so that only the nonlinear parity-breaking term is 
present, and examining how the results evolve with increasing α. 
In Fig. 1 we show a sequence of snapshots of the surface at dif-
ferent times for several values of α. These results show that the 
surface coarsens in time for sufficiently small values of α, just 
as it does for α = 0. There are several ways in which the dy-
namics for α > 0 differs in detail from cKS dynamics, however. 
In the cKS equation, coarsening occurs through merging of kinks 
[18], as shown in Fig. 2. For α > 0, a small hump will merge into 
the left side of a larger hump, and rather than the two kinks 
associated with the small hump merging, the right kink of the 
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