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Electromagnetic wave propagation in anisotropic dielectric media with two generic matrices εi j and μi j

of permittivity and permeability is studied. In the framework of a metric-free electrodynamics approach,
a compact tensorial dispersion relation is derived. The derivation does not require the corresponding
matrices to be symmetric, positive definite, nor even invertible. The resulting formula is useful for a
theoretical and experimental study of electromagnetic wave propagation in a wide class of linear media.
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1. Introduction

The development of the modern microscopic technology (nano-
technology) provides a possibility to manufacture materials of
rather non-ordinary electromagnetic parameters. This situation
calls for a theoretical investigation of electromagnetic wave propa-
gation in media with a generic constitutive law.

Undoubtedly, wave propagation is a most generic physical phe-
nomena which joins the classical and quantum field theories.
Moreover it emerges in a broad class of theoretical and experi-
mental subjects, particularly in the high energy physics, general
relativity, astrophysics, materials science and the plasma physics.
The theoretical issues connected to the wave propagation phenom-
ena yield a class of intriguing mathematical physics problems.

A wide class of media is characterized by a linear constitu-
tive law and in general can be described by four 3 × 3 matrices.
Two of these matrices, εi j and μi j (permittivity and permeability
matrices), describe the pure electric and the magnetic properties
of matter, respectively. Two additional matrices describe relatively
smaller electric–magnetic cross-term effects.

The ordinary textbook’s description of a medium with two
anisotropic matrices εi j and μi j is based on their diagonaliza-
tion [1–3]. This algebraic procedure is always possible in the case
when both matrices are symmetric and one of them is positive
definite. Even with this restriction, the corresponding dispersion
relation was obtained in a rather complicated form. Moreover, it
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is clear that the diagonalization technique is not applicable in a
general case when both matrices εi j and μi j are not symmetric
nor positive definite. Such extensions of the standard electromag-
netic materials properties are not only of a theoretical interest. In
fact, the medium with negative permittivity and permeability pa-
rameters serves as a theoretical basis for recently manufactured
metamaterials. The non-symmetric matrices are necessary for de-
scription of the medium which parameters are modified by ex-
ternal electromagnetic fields (the magnetized ferrite). The medium
with non-invertible matrices is recently discussed in form of a per-
fect electromagnetic conductor.

In the current Letter, we study the wave propagation in a
generic medium in a framework of premetric electrodynamics ap-
proach [4–9]. Our final result is a compact form of the dispersion
relation for electromagnetic waves in an anisotropic medium. For
two generic matrices εi j and μi j , it is given by the expression

w4 − 2
(
ψ i jkik j

)
w2 + εi jkik j

detε

μmnkmkn

detμ
= 0. (1.1)

Here the matrix ψ i j is defined as

ψ i j = 1

2
ε imnε jpqε−1

nq μ−1
mp . (1.2)

The organization of the Letter is as follows: In the next sec-
tion, the metric-free electrodynamics notation is recalled. In Sec-
tion 3, the covariant metric-free form of the dispersion relation is
represented. The main results are given in Section 4 where sev-
eral compact forms of the generic dispersion relation and some
straightforward consequences of them are derived. In Section 5,
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the examples for isotropic, diagonal anisotropic, and non-diagonal
(magnetized ferrite) media are represented.

2. Anisotropic media in the metric-free description

Let us start with a metric-free four-dimensional system of
Maxwell equations

εαβγ δ Fβγ ,δ = 0, Hαβ
,β = 4π J α. (2.1)

It includes an antisymmetric tensor of the field strength Fαβ and
an antisymmetric tensor density of the field excitation Hαβ . The
coordinate indices are denoted by Greek letters which run over
the range of α,β, . . . = 0,1,2,3, the comma denotes the partial
derivatives relative to the coordinates {x0, x1, x2, x3} = {t, x, y, z}.
In the sequel, the Roman indices will be used for the spatial co-
ordinates, i, j, . . . = 1,2,3. The four-dimensional Levi-Civita’s per-
mutation pseudo-tensor εαβγ δ is normalized as ε0123 = 1, while
ε0123 = −1.

The (1 + 3)-decomposition of the field tensors reads

Ei = F0i, Bi = −1

2
εi jk F jk, (2.2)

Di = H0i, Hi = 1

2
εi jk H jk. (2.3)

The electric current is given by J 0 = ρ , and J i = ji . In this no-
tation, the system (2.1) is rewritten in the ordinary three-dimen-
sional form of Maxwell equations

div B = 0, curl E + ∂B

∂t
= 0, (2.4)

div D = 4πρ, curl H − ∂D

∂t
= 4π j. (2.5)

For a dielectric medium, two antisymmetric tensor fields are
assumed to be linearly related one to another

Hαβ = 1

2
χαβγ δ Fγ δ. (2.6)

The constitutive tensor χαβγ δ is antisymmetric in two pairs of in-
dices, so it has, in general, 36 independent components. Such a
generic constitutive tensor can be represented by four three-di-
mensional matrices of 9 independent components. This represen-
tation can be written in the form

χαβγ δ =
(

εi j γ i
j

γ̃ i
j πi j

)
. (2.7)

We restrict ourselves to an electromagnetic medium which is de-
scribed by two tensors εi j and πi j . Two additional tensors γ i

j and
γ̃ i

j represent the electric–magnetic cross-terms, which are rela-
tively small for most types of the dielectric materials. In this Letter,
they are taken to be equal to zero. We will consider, however,
some type of a generalized anisotropic medium. In particular, we will
not require the matrices εi j and πi j to be symmetric, positive def-
inite, nor even invertible. Consequently we will use a constitutive
tensor of 18 independent components

χαβγ δ =
(

εi j 0
0 πi j

)
. (2.8)

Note the relations:

χ0i0 j = εi j, χ i jkl = −ε i jmεklnπmn, (2.9)

where the three-dimensional Levi-Civita’s permutation pseudo-
tensor ε i jk is normalized as ε123 = 1. In three-dimensional form,
the corresponding constitutive relation is given by

Di = εi j E j, Hi = πi j Bi . (2.10)

For a regular impermeability matrix πi j , an inverse permeability ma-
trix is defined —(
π−1)i j = μi j . (2.11)

With this notation, the constitutive relation takes the ordinary
form

Di = εi j E j, Bi = μi j H j. (2.12)

3. A general dispersion relation

Recently, a covariant dispersion relation for a generic consti-
tutive tensor χαβγ δ was studied intensively, see [5,6]. Here we
briefly recall the necessary notation and the main stages of the
derivation as it is given in [9].

Our aim is to establish the necessary conditions for existence of
physically non-trivial solutions of the source-free system

εαβγ δ Fβγ ,δ = 0, χαβγ δ Fβγ ,δ = 0. (3.1)

Let the ordinary conditions of the geometric optics approximation
be accepted. In particular, we consider the media parameters en-
coded in χαβγ δ as varying slowly relative to the change of the
electromagnetic field.

The first equation of (3.1) has a standard solution in term of the
vector potential Aα

Fαβ = 1

2
(Aα,β − Aβ,α). (3.2)

Consequently, the second equation of (3.1) takes the form

χαβγ δ Aγ ,βδ = 0. (3.3)

Let us look for a solution of this equation in the form of a
monochromatic wave ansatz

Aα = aαeiqβ xβ

. (3.4)

We substitute this ansatz into (3.3) and treat the amplitude of the
field aα and the wave covector qβ as slowly varying functions of a
spacetime point. Consequently, we come to an algebraic system

Mαδaδ = 0 (3.5)

with a characteristic matrix

Mαδ = χαβγ δqβqγ . (3.6)

This matrix evidently satisfies the relations

Mαδqα = 0, Mαδqδ = 0. (3.7)

These relations have a clear physical meaning. The first equation
represents the charge conservation law, while the second one means
that the ansatz (3.4) with qα ∼ aα is a solution of (3.5). Certainly
this solution does not have a physical meaning, because it corre-
sponds to a zero value of the field Fαβ , i.e., it is related to the
gauge invariance of the field equations.

Thus we are looking for solutions of the system (3.5) con-
strained by the relations (3.6). In the matrix language, these re-
lations mean that the columns and the rows of the matrix Mαδ

are linearly dependent, i.e., the matrix is singular. Consequently,
our system always has a non-zero solution. However, due to the
gauge invariance, we need more of that. In fact, we are looking for
an additional linear independent solution. Only this one will be of
a physical meaning.

It is an algebraic fact, that a linear system has two independent
solution only if the adjoint of the characteristic matrix is equal to
zero. So we come to an equation

(adj M)αβ = 0. (3.8)
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