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Synchronized stability in a reaction–diffusion neural network model

Ling Wang, Hongyong Zhao ∗

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 August 2014
Received in revised form 10 October 2014
Accepted 14 October 2014
Available online 18 October 2014
Communicated by F. Porcelli

Keywords:
Delayed neural network
Synchronization
Reaction–diffusion
Hopf bifurcation

The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. 
We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the 
non-trivial role that delay plays in different locations. The corresponding numerical simulations are 
used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the 
effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the 
synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate 
regions, multiple unstability and bistability or unstability and bistability may coexist.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study of the dynamics of the neural networks is an inter-
disciplinary matter, which has concentrated the interest of many 
researchers for the last decades [1] (e.g., mathematicians, physi-
cists, computer scientists and so on). Since Marcus and Westervelet 
[2] incorporated a single time lag into the connection term of 
Hopfield’s model, delays have been inserted into various simple 
neural networks, many authors have also investigated the dynam-
ics of the neural networks of two or more neurons with delays, 
and have shown various types of dynamical behaviors (see, for ex-
ample [3–8] and references therein). However, most of these work 
only considered the individual neural network but did not investi-
gate the interactions between different neural networks.

As a matter of fact, neural networks consist of many nonlinear 
components which are interdependent and form a complex system 
with new emergent properties that are not held by each individ-
ual item in the system alone. Coupled networks, which are com-
bined by subnetworks and each subnetwork has its own dynamical 
property, are ubiquitous and also common in many branches of 
science [9]. For instance, in order to describe the complicated in-
teraction between billions of neurons in large neural networks, the 
neurons are often lumped into highly connected subnetworks and 
the brain organization can be viewed in gross sense as a number 
of local subnetworks coupled by long distance connections [10].

Recently, Shayer and Campbell [11] considered the following 
two coupled units
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They were interested in studying how time delays can affect not 
only the stability of fixed points of the network but also the bi-
furcation of new solutions when stability is lost. The authors [12]
provided the stability and bifurcation of periodic solutions for a 
neural network with n elements where delays between adjacent 
units and external inputs are included, the particular cases n = 2
and n = 3 were discussed in detail.

The subnetwork of the coupling models both in [11] and [12]
are single neuron. Song et al. [13] considered a neural network 
coupled by two sub-networks, each consisting of two neurons as 
follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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the conditions ensuring the stability and direction of the Hopf bi-
furcation being determined. In [14], Campbell et al. studied the 
delayed neural network model coupled by a pair of Hopfield-like 
tri-neuron loops
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They analyzed the roots of characteristic equation explicitly and 
specially investigated the local stability and bifurcation and ob-
served some in-phase or anti-phase oscillations in numerical sim-
ulations. Recently, Hsu et al. [15] extended the results of Camp-
bell et al. [14] to a delayed model comprised of a pair of loops 
each with n neurons. Based on [14] and [15], Peng and Song [16]
studied a delayed neural network consisting of a pair of identical 
tri-neuron network loops with bidirectional coupling of all neurons 
between loops, while Yuan and Li [17] gave the explicit conditions 
ensuring the stability and direction of the Hopf bifurcation of the 
model in [16].

The rich dynamics arising from the interaction of simple units 
have been a source of interest for scientists modeling the collective 
behavior of real-life systems. Inspired by the above, a coupled net-
work of dynamical systems can exhibit a range of interesting be-
havior, qualitatively very different from their behavior in isolation, 
such as synchronization [18,19], phase trapping, phase locking, and 
amplitude death.

Among them, synchronization, which is the phenomenon where 
systems, due to some kind of interaction, adjust their individual 
behavior in such a way that their behaviors become identical, has 
been causing researchers’ wide focus [8,30,38] since the works by 
Pecora and Carroll [20]. Experiment and theoretical analysis have 
revealed that a mammalian brain not only displays in its storage 
of associative memories, but also modulates oscillatory neuronal 
synchronization by selective perceive attention [21,22]. The dif-
ference of using the benefits between synchronized stability and 
synchronized bifurcation is that memorized images correspond to 
equilibrium point attractors in the former and limit cycle attractors 
in the latter. In the theory and applications of content address-
able memories, a stable solution can be used as coded informa-
tion of a memory of the system to be stored and retrieved [7], 
pattern recognition by coupled neural networks consisting in con-
vergence to the corresponding limit cycle attractor, which stores
and retrieves complex oscillatory patterns in the synchronization 
states [23]. Periodic oscillation in neural networks is an interest-
ing phenomenon, like many biological and cognitive activities [1]. 
So, how to understand the synchronized stability and synchronized 
bifurcation is very useful. In [24], Wei and Yuan considered the 
synchronized periodic oscillation in a ring neural network model 
with two different delays.

Reaction–diffusion (RD) mechanisms can describe many biolog-
ical phenomena such as neuron firing in the brain, the heartbeat, 
cellular organization activities or even biological disorders such as 
fibrillation [37]. It is known that the foundations of neural pro-
cessing refer to a phenomenon which takes place both in space 
and in time and involves an ensemble of neurons mutually con-
nected, their dynamics is governed by the law of diffusion [35]. In 
signal transmission, the signal will become weak due to diffusion 
[36]. In addition, inspired by [25,26], we know that not only the 
evolution time of each variable and its position (space) but also 
the interactions deriving from the space-distributed structure of 
the whole networks determine the whole structure and dynamic 

behavior of multi-layer cellular neural networks seriously and in-
tensively. Therefore, it is essential to consider the state variables 
that are varying not only with time but also with space [27–31]
and reaction–diffusion effects cannot be neglected in both biologi-
cal and man-made neural networks.

The simplest model to display features of neural interaction 
comprised of two coupled neural systems. Starting from this sim-
plest network motif, larger networks can be built, and their effects 
may be studied. So, we focus on the simplest example in which 
each network copy is capable of oscillation, namely, a pair of sim-
ple loops of three neurons. With these in mind, based on the 
models in [12] and [14], we consider two kinds neural networks 
coupled by two sub-loop networks, each including three neurons: 
one way with delay in coupling; the other way with delay in sub-
networks, both shown as follows (Fig. 1).
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the Neumann boundary and initial conditions are given by
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2) Ring Structure with delay
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with Neumann boundary conditions (2), initial conditions are given 
by
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