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We consider the wind-forced nonlinear Schrödinger (NLS) equation obtained in the potential flow 
framework when the Miles growth rate is of the order of the wave steepness. In this case, the form 
of the wind-forcing terms gives rise to the enhancement of the modulational instability and to a band 
of positive gain with infinite width. This regime is characterised by the fact that the ratio between wave 
momentum and norm is not a constant of motion, in contrast to what happens in the standard case 
where the Miles growth rate is of the order of the steepness squared.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The modulational instability (known as Benjamin–Feir instabil-
ity in the context of fluid dynamics [1,2]) is ubiquitous in physics, 
it occurs in nonlinear waves within numerous physical situations 
(water waves, plasma waves, laser beams, electromagnetic trans-
mission lines, . . . ) [3,4] and it is one of the possible mecha-
nisms of catastrophic growth and generation of rogue waves in the 
ocean [5].

The stability properties of the wavetrains rely on the form of 
the damping/pumping terms in the governing equations which, in 
the context of water waves, depend on the wind providing en-
ergy to the system [6–8]. Modelling the effects of wind on ocean 
waves is a very complex task due to turbulence in both the atmo-
spheric and the oceanic boundary layers, and nonlinearities in the 
propagation of the gravity waves at the interface. The problem has 
been simplified by assuming quasi-laminar airflows [9] through the 
Miles mechanism [10], quasi-linear theory in wind-wave genera-
tion (the Janssen mechanism [11]) and different approximations in 
the wave dynamics (i.e. in the Navier–Stokes equations or the Eu-
ler equations) to obtain mathematical models for the propagation 
of surface gravity waves which can be handled analytically. The 
wind can induce either damping or forcing terms in the result-
ing equations [12,8] depending on its speed and direction relative 
to the wave propagation. Many experiments have been performed 
to investigate how surface waves and modulational instability are 
affected by wind and dissipation [13–17], sometimes with con-
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trasting results regarding in particular the values of the damping 
rates induced by winds blowing slower or opposite to the wave 
velocity [18–20].

The effect of wind can be modelled in the framework of the 
Miles mechanism [10] and the potential flow approximation [21]
for deep-water waves. The growth rate ΓM/ f of the wave energy 
(normalised with respect to the frequency of the carrier wave) is 
most often taken of the same order as the dissipation, hence at 
the ΓM/ f = O (ε2), and the resulting envelope equation at third-
order in the wave steepness ε is given by a wind-forced nonlinear 
Schrödinger (NLS) equation [12,8,22] of the form
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where β1 = −(dcg/dk)/2 = ω/(8k2), M = ωk2/2, and ν is the kine-
matic viscosity.

Recently we have derived the wind-forced NLS for stronger 
wind forcing, with a growth rate ΓM/ f of the wave energy of 
the same order as the steepness [23], ΓM/ f = O (ε). In this case, 
the envelope equation obtained by the multiple-scale perturbation 
method at third-order in ε reads
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where β2 = 3ΓM/(4k) and β3 = Γ 2
M/(8ω). As compared to Eq. (1), 

the latter equation contains two additional forcing terms, namely 
the terms proportional to β2 and β3.

In this Letter, we investigate the effects of the wind-forcing 
terms in Eq. (2) on the modulational instability (Section 2) and 

http://dx.doi.org/10.1016/j.physleta.2014.10.017
0375-9601/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2014.10.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://dx.doi.org/10.1016/j.physleta.2014.10.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.10.017&domain=pdf


M. Brunetti, J. Kasparian / Physics Letters A 378 (2014) 3626–3630 3627

compare it to the well-known case described by Eq. (1) for ref-
erence. We show that considering the wave-energy growth rate at 
the first order in steepness results in widely extending the spectral 
range of the modulational instability gain. Besides, we show (Sec-
tion 3) that the way wind-forcing is considered affects the ratio of 
the momentum to the norm of the pulse, that is conserved only 
if the growth rate is limited to the second order in steepness. We 
compare this finding with recent sets of experiments where either 
the carrier wave amplitude or the initial perturbation amplitudes 
are sufficiently large and the modulational instability is enhanced 
[15], suggesting the physical relevance of considering the model 
given by Eq. (2). We discuss the main results in Section 4 and we 
draw the conclusions in Section 5.

2. Modulational instability

Benjamin and Feir [1] showed that inviscid deep-water wave-
trains are unstable to small perturbations of other waves travelling 
in the same direction with frequencies within the band of posi-
tive gain. We compare here the modulation instability when wind 
forcing terms are included in the envelope equations in two dif-
ferent regimes: low Miles growth rates ΓM/ f = O (ε2) (that is the 
well-known standard case that we develop for reference) and high 
Miles growth rates ΓM/ f = O (ε).

2.1. Low growth rates

We review here for reference the standard case where the en-
velope equation is given by Eq. (1). This will be useful to set-up 
the formalism and to compare with results obtained when consid-
ering growth rates at the first order in steepness.

By defining τ = ωt , ξ = 2kx, Γ = ΓM/(2ω), δ = 2νk2/ω, K =
Γ − δ, and A = ka/

√
2, Eq. (1) reduces to [8]

i Aτ − 1

2
Aξξ − A|A|2 = iK A (3)

The factor K on the right-hand side can be positive, null or neg-
ative depending on the relative importance of the viscosity term 
δ with respect to the wind-forcing term Γ . The Stokes-like wave, 
which is a solution of Eq. (3) independent on ξ , is given by

A S(τ ) = A0eKτ e−ib(τ ), b(τ ) = |A0|2
2K

(
e2Kτ − 1

)
(4)

Note that for K = 0, we get b(τ ) = |A0|2τ , which is valid in the 
inviscid case. Following previous studies [15,12,8], the Stokes-like 
wave is perturbed as follows

A(ξ, τ ) = A S(τ )
[
1 + δ0ζ(ξ, τ )

]
(5)

with δ0 infinitesimal and ζ(ξ, τ ) = M(ξ, τ ) + iN(ξ, τ ). Substituting 
into Eq. (3) gives the following system of equations
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Nτ + 1

2
Mξξ + 2|A S |2M = 0 (7)

By choosing perturbations of the form

M(ξ, τ ) = �{
M0(τ )ei�ξ} (8)

N(ξ, τ ) = �{
N0(τ )ei�ξ} (9)

where � is the modulational wavenumber, the previous system be-
comes

Fig. 1. Band of positive gain for the modulational wavenumbers � with |AS | = 0.1: 
low Miles growth-rates (dashed red line) and high Miles growth-rates (solid blue 
line) with ΓM/ f = ε = √

2|AS |. Dash-dotted vertical lines correspond to �∗ =
±√

2|AS |. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
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which corresponds to the following equation [15,12,8]
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In the case K = 0, this differential equation has constant coeffi-
cients and by setting M0(τ ) = M̃e−iΩτ , one gets the dispersion 
relation [15]

Ω = ± �√
2

√
�2

2
− 2|A0|2 (13)

In the case K �= 0, Eq. (12) is a Sturm–Liouville problem [15]
which must be analysed as in [15,8]. The presence of oscillatory 
or exponentially growing solutions depends on the sign of the 
factor (�2/2 − 2|A0|2e2Kτ ) in Eq. (12). Growing perturbations of 
the Stokes-like solution appear in a limited range of modulational 
wavenumbers [15]

�2 < 4|A0|2e2Kτ (14)

The stability range expands (contracts) with time in the presence 
of pumping K = Γ −δ > 0 (damping Γ < δ), but the Benjamin–Feir 
instability gain is independent from the pumping/damping term 
[15,7]. In other words, the dependence on Γ is only within the ex-
ponential term which appears in the Stokes wave amplitude |A S |
and determines expansion or contraction depending on the sign 
of K . The range where modulational wavenumbers become unsta-
ble is shown in Fig. 1, dashed line, for |A S | = 0.1. The maximum 
growth rate occurs at �∗ = ±√

2|A S | (see vertical dash-dotted lines 
in Fig. 1)

ΩI
(
� = �∗) = |A0|2e2Kτ = |A S |2 (15)

2.2. High growth rates

Here we conduct a similar procedure in the case of the en-
velope equation (2) obtained from the full nonlinear gravity-wave 
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