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In this article, Quispel, Roberts and Thompson type of nonlinear partial difference equation with two 
independent variables is considered and identified five distinct nonlinear partial difference equations 
admitting continuous point symmetries quadratic in the dependent variable. Using the degree growth 
of iterates the integrability nature of the obtained nonlinear partial difference equations is discussed. It 
is also shown how to derive higher order ordinary difference equations from the periodic reduction of 
the identified nonlinear partial difference equations. The integrability nature of the obtained ordinary 
difference equations is investigated wherever possible.
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1. Introduction

Lie groups and Lie algebras are mathematical objects which 
have originated in the seminal work of Sophus Lie (1842–1899) 
on solving differential equations by quadrature, using symmetry 
methods. Lie symmetries approach originally introduced by Sophus 
Lie has been used as a tool to unify various integration techniques 
for ordinary differential equations (ODEs) and has played a very 
important role in the study of both ODEs and partial differential 
equations (PDEs). Symmetry groups are invariant transformations 
which do not alter the structural form of the equation under in-
vestigation. Once the symmetry group of a system of differential 
equations is known, it can be used to generate new solutions from 
the old ones, often interesting ones from trivial ones [20]. It can 
be used to classify solutions into conjugacy classes and to classify 
and simplify differential equations. An important application of the 
symmetry approach is the reduction of an ODE to a lower order 
one, the reduction of a PDE to one with fewer independent vari-
ables. The usefulness of Lie symmetry approach has been widely 
illustrated for a variety of dynamical systems governed by both 
nonlinear ODEs and PDEs which arise in different contexts [3,8,
9,19,20,27] during the past several decades [3,8,9,19,20,27]. Dur-
ing 1980s Maeda [15–18] has extended Lie symmetries approach 
to discrete systems governed by nonlinear mappings or ordinary 
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difference equations (O�Es) and demonstrated how it provides an 
effective tool to derive their continuous point symmetries. Later 
on the Lie symmetry approach has been further developed by Levi 
and Winternitz [10,12], Quispel et al. [22], Levi et al. [11,13] and 
others [4,7,23,24] to nonlinear discrete systems governed by partial 
differential–difference equations (PD�Es) and O�Es. Also, several 
groups have profitably exploited to derive mathematical structures 
related with integrability of different nonlinear P�Es possessing 
solitons [1,6,25]. Though the Lie symmetry approach has been ex-
tended to discrete nonlinear systems governed by lattice equations 
or nonlinear partial difference equations (P��Es), its effective-
ness has not yet been demonstrated widely. The objective of this 
article is to illustrate its usefulness on other nonlinear P��Es. 
More specifically a scalar nonlinear P��E of Quispel, Roberts and 
Thompson (QRT) type [21]

v(l + 1,m + 1)

= f1(v(l,m + 1), v(l + 1,m)) − v(l,m) f2(v(l,m + 1), v(l + 1,m))

f3(v(l,m + 1), v(l + 1,m)) − v(l,m) f4(v(l,m + 1), v(l + 1,m))

is considered and under what conditions on f i it possesses con-
tinuous point symmetries quadratic in the dependent variable is 
investigated. The integrability nature of obtained P��Es is ana-
lyzed using the degree growth of iterates [26], another character-
istic of integrable discrete systems. Also, it is shown how higher 
order O�Es are explicitly derived.

The paper is organized as follows. In Section 2, QRT type of 
nonlinear P��E is considered as mentioned above and under 
what conditions on f i it possesses continuous point symmetries 
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quadratic in the dependent variable is investigated. In Section 3, 
the integrability nature of the obtained P��Es is analyzed through 
the degree growth of iterates. In Section 4, higher order O�Es are 
derived from the periodic reduction of the obtained P��Es. Also, 
it is shown that the derived O�Es are measure preserving and they 
admit sufficient number of integrals, if exist, leading to their inte-
grability. In Section 5, a brief summary of the obtained results and 
concluding remarks are provided.

2. Lie point symmetries of partial difference equations

Consider a scalar nonlinear P�E of the form

v(l + 1,m + 1) = F
(

v(l,m), v(l,m + 1), v(l + 1,m)
)
, (2.1)

where F (v(l, m), v(l, m + 1), v(l + 1, m)) is an arbitrary function. 
Let us assume that (2.1) is invariant under a one-parameter (ε)

continuous point transformations

l∗ = l, m∗ = m, (2.2)

v∗ = v(l,m) + εη
(
l,m, v(l,m)

) + O
(
ε2) (2.3)

with infinitesimal generator

X = η
(
l,m, v(l,m)

) ∂

∂v(l,m)
(2.4)

provided any solution v(l, m) satisfies (2.1). Hereafter denoting

F ≡ F
(

v(l,m), v(l,m + 1), v(l + 1,m)
)
, vl

m ≡ v(l,m),

vl
m+1 ≡ v(l,m + 1), vl+1

m ≡ v(l + 1,m),

vl+1
m+1 ≡ v(l + 1,m + 1)

unless otherwise specified. Then the invariant equation reads

η(l + 1,m + 1, F ) = η
(
l,m + 1, vl

m+1

) ∂ F

∂vl
m+1

+ η
(
l + 1,m, vl+1

m

) ∂ F

∂vl+1
m

+ η
(
l,m, vl

m

) ∂ F

∂vl
m

. (2.5)

Eq. (2.5) is a functional difference equation and there is no known 
method to solve it. In the present work, the investigation is re-
stricted to QRT type nonlinear P��E having the form

F = f1 − vl
m f2

f3 − vl
m f4

, (2.6)

where f1, f2, f3 and f4 are arbitrary functions of vl
m+1 and vl+1

m . 
In order to solve the invariance equation (2.5) with (2.6), assume 
that

η
(
l,m, vl

m

) = A(l,m)
(
c1 + c2 vl

m + c3
(

vl
m

)2)
, (2.7)

where A(l, m) is an arbitrary function and ci , i = 1, 2, 3 are arbi-
trary parameters. To start with let A(l, m) = 1. Using (2.7) along 
with their shifts in Eq. (2.5) and equating powers of (vl

m) j , j =
0, 1, 2 to zero the following three equations are obtained:

f 2
2

(
c1 + c2 vl

m+1 + c3
(

vl
m+1

)2) ∂

∂vl
m+1

(
f4

f2

)

+ f 2
2

(
c1 + c2 vl+1

m + c3
(

vl+1
m

)2) ∂

∂vl+1
m

(
f4

f2

)

+ [
c1 f 2

4 + c2 f2 f4 + c3
(

f 2
2 + f2 f3 − f1 f4

)] = 0, (2.8)

(
c1 + c2 vl

m+1 + c3
(

vl
m+1

)2)

×
[

f 2
1

∂

∂vl
m+1

(
f4

f1

)
+ f 2

2
∂

∂vl
m+1

(
f3

f2

)]

+ (
c1 + c2 vl+1

m + c3
(

vl+1
m

)2)

×
[

f 2
1

∂

∂vl+1
m

(
f4

f1

)
+ f 2

2
∂

∂vl+1
m

(
f3

f2

)]

+ 2(c1 f3 f4 + c2 f1 f4 + c3 f1 f2) = 0, (2.9)

f 2
1

(
c1 + c2 vl

m+1 + c3
(

vl
m+1

)2) ∂

∂vl
m+1

(
f3

f1

)

+ f 2
1

(
c1 + c2 vl+1

m + c3
(

vl+1
m

)2) ∂

∂vl+1
m

(
f3

f1

)

+ [
c1

(
f 2
3 + f2 f3 − f1 f4

) + c2 f1 f3 + c3 f 2
1

] = 0. (2.10)

Then there exist different possibilities which will be discussed be-
low separately.

Case 1: c1 �= 0, c2 �= 0, c3 �= 0

After a detailed calculation it is found that Eqs. (2.8)–(2.10) sat-
isfy identically provided

f1 = 1, f2 = a

vl
m+1

+ (1 − a)

vl+1
m

,

f3 = a

vl+1
m

+ (1 − a)

vl
m+1

, f4 = 1

vl
m+1 vl+1

m

, (2.11)

where a is an arbitrary parameter and so the QRT P��Es (2.6)
becomes

vl+1
m+1 = vl

m+1 vl+1
m − vl

m[avl+1
m + (1 − a)vl

m+1]
[avl

m+1 + (1 − a)vl+1
m ] − vl

m

(2.12)

which is invariant under

l∗ = l, m∗ = m,

v∗ = vl
m + ε

[
c1 + c2 vl

m + c3
(

vl
m

)2] + O
(
ε2)

with infinitesimal generator

X = [
c1 + c2 vl

m + c3
(

vl
m

)2] ∂

∂vl
m

leading to the following generators:

X1 = ∂

∂vl
m

, X2 = vl
m

∂

∂vl
m

, X3 = (
vl

m

)2 ∂

∂vl
m

.

It is straight forward to check that the above generators satisfy

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3

indicating that the underlying Lie algebra of P��E (2.12) is not 
solvable [3].

Case 2: c1 = 0, c2 �= 0, c3 �= 0

Proceeding as before, we find that Eqs. (2.8)–(2.10) satisfy pro-
vided

f1 = 1, f2 = a

vl
m+1

+ (1 − a)

vl+1
m

,

f3 = a

vl+1
m

+ (1 − a)

vl
m+1

, f4 = 1

vl
m+1 vl+1

m

+ b

(
vl+1

m − vl
m+1

vl
m+1 vl+1

m

)2

(2.13)
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