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1. Introduction

Instead of using magnetic fields or spin-orbit couplings to
achieve Hall effects as in quantum Hall and quantum anomalous
Hall systems, Floquet topological insulators (TIs) are induced via
applying a time-periodic electric field [1-5]. When a quantum Hall
or a QAH system is periodically driven [2], chiral edge modes can
appear even if the Chern numbers of all Floquet bands are zero
[1,4,5]. To account for the net chirality of edge modes, winding
number is generalized [4], which plays a more basic role than
Chern number [6] in describing Floquet TIs. Unlike usual TIs, the
winding number is not directly related with a quantized Hall con-
ductance [7]. If the frequency £2 of the driving field is larger than
the total band width of the system, the driving field modifies the
electron band structures through virtual photon absorption/emis-
sion processes. The influence of such an off-resonant driving field
is captured in a static effective Hamiltonian. Whereas in the case
with £2 smaller than the band width — the on-resonant case — the
photon-assisted tunneling makes the Hall conductance nonquan-
tized. But the insulator behavior does not rely on the off-resonant
condition and is applicable whenever a quasienergy gap is opened.

As a prototype of zero-gap semiconductors with the Dirac cone
located at the Fermi level, graphene has attracted a lot of attention
on its response to periodic driving field [8-18]. When a weak off-
resonant circularly-polarized light is applied, the effective Hamil-
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tonian in real space has the same form as the Haldane model [19].
As a result, at the Dirac point, a gap is opened, which is bridged by
a chiral edge mode if the graphene layer is confined in one direc-
tion [3]. When the applied circularly-polarized light is on-resonant,
the electron and hole bands are folded at +£2/2, which results
in a dynamic gap due to the mechanism analogous to the near-
free electron approximation [8,10,12,13,17]. In the dynamic gap,
two Floquet chiral edge states are formed, which propagate in the
same direction along the boundaries of a graphene ribbon [17]. The
directions of the chiral edge states in both of the two gaps are re-
versed when a left circularly-polarized driving field is changed to
a right one or vice verse.

For a kagome lattice system, there exist one flat and two disper-
sive bands. The two dispersive bands have the same form as those
of graphene, and form the Dirac points at the K and K’ points. It
is expected that a kagome lattice system should have similar prop-
erty as graphene. But unlike graphene, a kagome lattice system has
an extra flat band, which is in degeneracy with one of the two dis-
persive bands at the I point of the Brillouin zone (BZ). A question
is how this extra flat band affects the Floquet topological prop-
erty of a kagome lattice system under a circularly-polarized driving
field. The motivation of the present paper is to answer this ques-
tion.

Thanks to recent rapid technique achievements of creating
“synthetic gauge fields”, which mimic a magnetic field or spin-
orbit interaction for neutral cold atoms [20-29], and emulating
the propagation of photons in the static experimental set-up as
the electronic evolution according to an effective time-dependent
Schrédinger equation [30,31], the topological properties of an
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Fig. 1. (a) The kagome lattice. The part surrounded by red dashed lines is one
unit cell. d; = (1, —+/3)a and d; = (1, ++/3)a are the unit lattice vectors with
a the lattice constant. (b) The k Brillouin zone. 131 =(1,-1/+/3)m/a and Ez =
(1,4+1/+/3)m /a are the reciprocal-lattice vectors. K and K’ are the Dirac points.
The part surrounded by green dotted (blue dash-dotted) lines is one unit cell of an
armchair (zigzag) ribbon. In a zigzag ribbon, K and K’ are good quantum numbers.

artificial kagome lattice under a time-periodic driving field can be
studied in detail [32,33].

Via the Floquet theory on time-periodic systems [34-36], the
chiral edge states and Floquet topological phases of a kagome lat-
tice system under a circularly-polarized driving field are studied. In
the off-resonant case, the system exhibits the similar property as
the kagome lattice model with staggered magnetic fluxes [37]. But
unlike that model, the total band width is damped in oscillation. In
the on-resonant case, the degeneracy splitting at the I" point does
not always result in a gap. Due to the influence of the flat band,
the dynamic gap is generally not located at +52/2 with respect to
the Dirac points, whereas the gap coming from the splitting of the
Dirac points can deviate from the Dirac points. With the field in-
tensity increased, these two gaps undergo closing-then-reopening
processes, accompanied with the changing of the winding num-
bers.

The organization of this paper is as follows. In Section 2, the
theoretical model and formulas are presented. In Section 3, the
numerical results are presented and discussed. A brief summary is
given in Section 4.

2. Model and formulas

In Fig. 1, the structure of a two-dimensional kagome lattice is
plotted. The corresponding tight-binding Hamiltonian is

H=] ) el e, (1)

(mn)

where ch (cm) is the creation (annihilation) operator of a spin-
less electron at the site m and the summation is over the near-
est neighbor sites. A left (right) circularly-polarized electric field
perpendicular to the lattice plane is introduced into the Hamil-
tonian as the Peierls phase via a time-periodic vector potential
A = Ap(cos £2t, +sin £2t), which is supposed to be uniform in the
plane. 7, is the position vector of the site m. The field amplitude is
characterized by a dimensionless number A =eApa/h with e the
electron charge and a the lattice constant. Hereafter h is set as 1.
Although this Hamiltonian is written on the electronic evolution
under a circularly-polarized electric field, it can also describe the
propagation of light in an array of helical waveguides [31] and the
cold-atom systems in shaking optical lattices [33].

The periodically-driven kagome lattice shows spatial transla-
tional symmetry. Via the Bloch theorem, the tight-binding Hamil-

tonian can be transformed into a time-dependent 3 x 3 matrix
Hi(£), which is

0 P+ PTefiE-az P;: + P3e7iE~(a1+ﬁ2)
P} + Pyeik@ 0 Py + Pie~ikd
P + Pyelk@+i)  p, 4 preikd 0
()
where
P1(t) = J exp{—iA[cos(£2t) &= /3sin(21)]/2}
P,(t) = J exp{—iA[cos(£2t) F /3sin(21)]/2} (3)

P3(t) = J exp{iA cos($2t)}

are the Peierls phase factors along three characteristic directions
dp/2, d1/2 and —(a; + dz)/2, respectively.

The Hamiltonian also has an explicit time dependence H(t +
T) = H(t) with period T =2m /£2. According to the Floquet theo-
rem [34-36], the solution of the Schrédinger equation can be writ-
ten as |Wy (t)) = e~fl|d, (1)), where the Floquet states |Py (1)) =
|®@y (t+ T)). The time evolution operator U(t, tg) satisfies the rela-
tion:

i%U(t, to) = H@)U(L, to), (4)

which can be written formally as U(t,ty) = Texp(—iftg H(t"dt")

with T the time-ordering operator. Under the evolution over one
complete period of driving, each Floquet state is mapped onto itself
up to a phase:

U(t+T,0)|@q 1) =e T |dy (1)) (5)

Similar to the crystal momentum of a system with discrete trans-
lational symmetry, the quasienergy &, is a periodic variable and
uniquely defined in the quasienergy BZ, which is usually taken as
(—9£2/2,8/2] or (0, $2]. Combined with the Bloch theorem, the
3 x 3 evolution matrix results in three Bloch-Floquet states & (k)
with o =1, 2 and 3. Generally, three quasienergy band gaps may
be opened.

An effective stationary Hamiltonian Hes is defined through the
relation [1-3]

Ut +T,t)=e HerT (6)

With Hef(£)|Po (t)) = €o|Py(t)). Here, t is a parameter of this
eigenvalue problem. The effective Floquet Hamiltonian is defined
at each value of the time parameter, and the topological properties
of each of these Hamiltonians are the same [1-3]. The influence of
an off-resonant driving field is captured in the effective Hamilto-
nian and the corresponding Hall conductance is quantized in the
Floquet TI phases [1-3].

In both of the off- and on-resonant cases, the Floquet topologi-
cal property can be obtained from the number and chirality of Flo-
quet edge states (FESs) in the quasienergy spectrum of a kagome
lattice ribbon. Two types of ribbons are illustrated in Fig. 1(a). For
one of them, ky is a good quantum number, and the K and K’
points are conserved in the quasienergy spectrum. This type of
ribbons is called the zigzag one. The other is the armchair one,
where the K and K’ points are mixed. In a zigzag ribbon, one unit
cell consists of N sites, which results in Ny quasienergies &q (kx)
with 1 <« < Ny. In a similar manner, the quasienergy spectrum
of an armchair ribbon can be obtained. The chirality of FES’s is de-
termined from their locations and group velocities. As in the static
case, a winding number can be defined from their number and
chirality [7]. It should be emphasized that in the on-resonant case,
the winding number is not directly related with the Hall conduc-
tance [3]. But the numeric results on graphene ribbons show that
the chirality of Floquet edge states is robust against disorder [17].
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