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The Floquet topological phases and chiral edge states in a kagome lattice under a circularly-polarized 
driving field are studied. In the off-resonant case, the system exhibits the similar character as the kagome 
lattice model with staggered magnetic fluxes, but the total band width is damped in oscillation. In the 
on-resonant case, the degeneracy splitting at the Γ point does not always result in a gap. The positions 
of the other two gaps are influenced by the flat band. With the field intensity increased, these two gaps 
undergo closing-then-reopening processes, accompanied with the changing of the winding numbers.
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1. Introduction

Instead of using magnetic fields or spin–orbit couplings to 
achieve Hall effects as in quantum Hall and quantum anomalous 
Hall systems, Floquet topological insulators (TIs) are induced via 
applying a time-periodic electric field [1–5]. When a quantum Hall 
or a QAH system is periodically driven [2], chiral edge modes can 
appear even if the Chern numbers of all Floquet bands are zero 
[1,4,5]. To account for the net chirality of edge modes, winding 
number is generalized [4], which plays a more basic role than 
Chern number [6] in describing Floquet TIs. Unlike usual TIs, the 
winding number is not directly related with a quantized Hall con-
ductance [7]. If the frequency Ω of the driving field is larger than 
the total band width of the system, the driving field modifies the 
electron band structures through virtual photon absorption/emis-
sion processes. The influence of such an off-resonant driving field 
is captured in a static effective Hamiltonian. Whereas in the case 
with Ω smaller than the band width — the on-resonant case — the 
photon-assisted tunneling makes the Hall conductance nonquan-
tized. But the insulator behavior does not rely on the off-resonant 
condition and is applicable whenever a quasienergy gap is opened.

As a prototype of zero-gap semiconductors with the Dirac cone 
located at the Fermi level, graphene has attracted a lot of attention 
on its response to periodic driving field [8–18]. When a weak off-
resonant circularly-polarized light is applied, the effective Hamil-
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tonian in real space has the same form as the Haldane model [19]. 
As a result, at the Dirac point, a gap is opened, which is bridged by 
a chiral edge mode if the graphene layer is confined in one direc-
tion [3]. When the applied circularly-polarized light is on-resonant, 
the electron and hole bands are folded at ±Ω/2, which results 
in a dynamic gap due to the mechanism analogous to the near-
free electron approximation [8,10,12,13,17]. In the dynamic gap, 
two Floquet chiral edge states are formed, which propagate in the 
same direction along the boundaries of a graphene ribbon [17]. The 
directions of the chiral edge states in both of the two gaps are re-
versed when a left circularly-polarized driving field is changed to 
a right one or vice verse.

For a kagome lattice system, there exist one flat and two disper-
sive bands. The two dispersive bands have the same form as those 
of graphene, and form the Dirac points at the K and K ′ points. It 
is expected that a kagome lattice system should have similar prop-
erty as graphene. But unlike graphene, a kagome lattice system has 
an extra flat band, which is in degeneracy with one of the two dis-
persive bands at the Γ point of the Brillouin zone (BZ). A question 
is how this extra flat band affects the Floquet topological prop-
erty of a kagome lattice system under a circularly-polarized driving 
field. The motivation of the present paper is to answer this ques-
tion.

Thanks to recent rapid technique achievements of creating 
“synthetic gauge fields”, which mimic a magnetic field or spin–
orbit interaction for neutral cold atoms [20–29], and emulating 
the propagation of photons in the static experimental set-up as 
the electronic evolution according to an effective time-dependent 
Schrödinger equation [30,31], the topological properties of an 
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Fig. 1. (a) The kagome lattice. The part surrounded by red dashed lines is one 
unit cell. �a1 = (1, −√

3 )a and �a2 = (1, +√
3 )a are the unit lattice vectors with 

a the lattice constant. (b) The �k Brillouin zone. �b1 = (1, −1/
√

3 )π/a and �b2 =
(1, +1/

√
3 )π/a are the reciprocal-lattice vectors. K and K ′ are the Dirac points. 

The part surrounded by green dotted (blue dash-dotted) lines is one unit cell of an 
armchair (zigzag) ribbon. In a zigzag ribbon, K and K ′ are good quantum numbers.

artificial kagome lattice under a time-periodic driving field can be 
studied in detail [32,33].

Via the Floquet theory on time-periodic systems [34–36], the 
chiral edge states and Floquet topological phases of a kagome lat-
tice system under a circularly-polarized driving field are studied. In 
the off-resonant case, the system exhibits the similar property as 
the kagome lattice model with staggered magnetic fluxes [37]. But 
unlike that model, the total band width is damped in oscillation. In 
the on-resonant case, the degeneracy splitting at the Γ point does 
not always result in a gap. Due to the influence of the flat band, 
the dynamic gap is generally not located at ±Ω/2 with respect to 
the Dirac points, whereas the gap coming from the splitting of the 
Dirac points can deviate from the Dirac points. With the field in-
tensity increased, these two gaps undergo closing-then-reopening 
processes, accompanied with the changing of the winding num-
bers.

The organization of this paper is as follows. In Section 2, the 
theoretical model and formulas are presented. In Section 3, the 
numerical results are presented and discussed. A brief summary is 
given in Section 4.

2. Model and formulas

In Fig. 1, the structure of a two-dimensional kagome lattice is 
plotted. The corresponding tight-binding Hamiltonian is

H = J
∑
〈mn〉

eie/h̄(�rn−�rm)· �Ac†
mcn, (1)

where c†
m (cm) is the creation (annihilation) operator of a spin-

less electron at the site m and the summation is over the near-
est neighbor sites. A left (right) circularly-polarized electric field 
perpendicular to the lattice plane is introduced into the Hamil-
tonian as the Peierls phase via a time-periodic vector potential 
�A = A0(cosΩt, ± sin Ωt), which is supposed to be uniform in the 
plane. �rm is the position vector of the site m. The field amplitude is 
characterized by a dimensionless number A = e A0a/h̄ with e the 
electron charge and a the lattice constant. Hereafter h̄ is set as 1. 
Although this Hamiltonian is written on the electronic evolution 
under a circularly-polarized electric field, it can also describe the 
propagation of light in an array of helical waveguides [31] and the 
cold-atom systems in shaking optical lattices [33].

The periodically-driven kagome lattice shows spatial transla-
tional symmetry. Via the Bloch theorem, the tight-binding Hamil-

tonian can be transformed into a time-dependent 3 × 3 matrix 
Ĥ�k(t), which is
⎛
⎜⎝

0 P1 + P∗
1e−i�k·�a2 P∗

3 + P3e−i�k·(�a1+�a2)

P∗
1 + P1ei�k·�a2 0 P2 + P∗

2e−i�k·�a1

P3 + P∗
3ei�k·(�a1+�a2) P2 + P∗

2ei�k·�a1 0

⎞
⎟⎠ ,

(2)

where⎧⎪⎪⎨
⎪⎪⎩

P1(t) = J exp
{−i A

[
cos(Ωt) ± √

3 sin(Ωt)
]
/2

}

P2(t) = J exp
{−i A

[
cos(Ωt) ∓ √

3 sin(Ωt)
]
/2

}

P3(t) = J exp
{

i A cos(Ωt)
}

(3)

are the Peierls phase factors along three characteristic directions 
�a2/2, �a1/2 and −(�a1 + �a2)/2, respectively.

The Hamiltonian also has an explicit time dependence H(t +
T ) = H(t) with period T = 2π/Ω . According to the Floquet theo-
rem [34–36], the solution of the Schrödinger equation can be writ-
ten as |Ψα(t)〉 = e−iεαt |Φα(t)〉, where the Floquet states |Φα(t)〉 =
|Φα(t + T )〉. The time evolution operator U (t, t0) satisfies the rela-
tion:

i
d

dt
U (t, t0) = H(t)U (t, t0), (4)

which can be written formally as U (t, t0) = T̂ exp(−i 
∫ t

t0
H(t′)dt′)

with T̂ the time-ordering operator. Under the evolution over one 
complete period of driving, each Floquet state is mapped onto itself 
up to a phase:

U (t + T , t)
∣∣Φα(t)

〉 = e−iεα T
∣∣Φα(t)

〉
. (5)

Similar to the crystal momentum of a system with discrete trans-
lational symmetry, the quasienergy εα is a periodic variable and 
uniquely defined in the quasienergy BZ, which is usually taken as 
(−Ω/2, Ω/2] or (0, Ω]. Combined with the Bloch theorem, the 
3 × 3 evolution matrix results in three Bloch-Floquet states εα(�k)

with α = 1, 2 and 3. Generally, three quasienergy band gaps may 
be opened.

An effective stationary Hamiltonian Heff is defined through the 
relation [1–3]

U (t + T , t) = e−iHeff T (6)

with Heff (t)|Φα(t)〉 = εα |Φα(t)〉. Here, t is a parameter of this 
eigenvalue problem. The effective Floquet Hamiltonian is defined 
at each value of the time parameter, and the topological properties 
of each of these Hamiltonians are the same [1–3]. The influence of 
an off-resonant driving field is captured in the effective Hamilto-
nian and the corresponding Hall conductance is quantized in the 
Floquet TI phases [1–3].

In both of the off- and on-resonant cases, the Floquet topologi-
cal property can be obtained from the number and chirality of Flo-
quet edge states (FESs) in the quasienergy spectrum of a kagome 
lattice ribbon. Two types of ribbons are illustrated in Fig. 1(a). For 
one of them, kx is a good quantum number, and the K and K ′
points are conserved in the quasienergy spectrum. This type of 
ribbons is called the zigzag one. The other is the armchair one, 
where the K and K ′ points are mixed. In a zigzag ribbon, one unit 
cell consists of N y sites, which results in N y quasienergies εα(kx)

with 1 ≤ α ≤ N y . In a similar manner, the quasienergy spectrum 
of an armchair ribbon can be obtained. The chirality of FES’s is de-
termined from their locations and group velocities. As in the static 
case, a winding number can be defined from their number and 
chirality [7]. It should be emphasized that in the on-resonant case, 
the winding number is not directly related with the Hall conduc-
tance [3]. But the numeric results on graphene ribbons show that 
the chirality of Floquet edge states is robust against disorder [17].
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