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The most general combination of couplings of fermions with external potentials in 1 + 1 dimensions,
must include vector, scalar and pseudoscalar potentials. We consider such a mixing of potentials in
a PT-symmetric time-independent Dirac equation. The Dirac equation is mapped into an effective PT-
symmetric Schrödinger equation. Despite the non-hermiticity of the effective potential, we find real
energies for the fermion.
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1. Introduction

In the last ten years the so-called PT-symmetric systems intro-
duced in the seminal paper by Bender and Boettcher [1] have at-
tracted very much attention. In fact, there are many works [2–13]
devoted to develop and understand the main properties of non-
Hermitian Hamiltonians with real eigenvalues, which however ex-
hibit parity and time-reversal symmetries. The one-dimensional
time-independent Schrödinger equation is invariant under space–
time inversion. In addition, there exist other classes of Hamiltoni-
ans with real spectra without being PT-symmetric, as can be seen,
for instance, in Refs. [4,5]; and systems where the PT-symmetry
is spontaneously broken with complex energy eigenvalues [7–9].
The problem of non-Hermitian time-dependent interactions which
does not exhibit PT-symmetry but still admits real energies is con-
sidered in Refs. [10–13]. Since there are many papers on the sub-
ject we suggest [9] for a review and the references therein and
also the papers in [14].

Many problems of relativistic particles interacting with non-
Hermitian potentials of scalar and vector natures have also been
reported in the literature [15–26]. In general, it has been shown
that for some configurations of those non-Hermitian potentials, the
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Klein–Gordon and Dirac equation admit real energies. The coupling
with scalar potentials in the Klein–Gordon and Dirac equations can
be seen as a position-dependent effective mass. In the relativistic
case, the ordering ambiguity of the mass and momentum opera-
tors, which is present in the non-relativistic one, should disappear.
Nevertheless, there are difficulties to define consistently fermions
and bosons, whenever one takes into account space–time depen-
dent masses. This happens due to the fact that physical particles in
quantum field theory must belong to an irreducible representation
of the Poincaré algebra [27,28]. One should be able to find genera-
tors specifying the particle properties, usually its mass and helicity.
However, it is quite hard to accomplish this task in the case of
spatially dependent masses. Thus, one should keep in mind that
all of these usually thought as relativistic equations for position-
dependent masses should be taken as effective equations. Never-
theless, the configuration of the position-dependent mass or the
effective scalar potential should be in a such way as to preserve
Lorentz symmetries including the improper ones such as parity.

The Dirac problem is easily mapped into a Sturm–Liouville
problem or, in other words, into a time-independent Schrödinger
equation with real or complex potentials whose bound-state so-
lutions present real energy eigenvalues. One interesting problem
that has been tackled in this context is the Dirac equation in 1 + 1
dimensions in the presence of a convenient complex vector poten-
tial plus a real scalar potential [15], wherein the scalar potential
plays the role of a position-dependent mass. Here, we will show
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that one can realize a more general system of massless fermions
in two dimensions interacting with a mixing of complex vector,
scalar and pseudoscalar potentials. Although complex, the scalar
and pseudoscalar potentials are responsible to open a mass gap
for the fermions. Such a scenario might be important for some
condensed matter systems, where the electrical conduction is es-
sentially one-dimensional. The scalar and pseudoscalar potentials
can be thought as defects in the lattice and the electrons are also
subject to a background potential of vector nature due to the ions
in the lattice.

Our purpose in this work is to show that the Dirac equation in a
two-dimensional world can still have real discrete energy spectrum
and supports fermion bound-states when a convenient mixing of
complex vector, scalar and pseudoscalar potentials is considered.
We call attention to the transformation of the potentials under par-
ity in order to have the PT-symmetry in the Dirac equation. Specific
configurations of those potentials are worked out in some detail.
The approach here is the mapping of the PT-symmetric Dirac prob-
lem into a naturally PT-symmetric effective Schrödinger equation.
Moreover, the subject of PT-symmetry breaking is addressed on the
same basis of Ref. [9].

2. The time-independent Dirac equation in 1 + 1 dimensions

We consider here the (1 + 1)-dimensional time-independent
Dirac equation for a massless fermion under the action of a general
potential V . It is written as

HΨ (x) = EΨ (x), (1)

H = cαp + V, (2)

where E is the energy of the fermion, c is the velocity of light and
p is the momentum operator. α and β are Hermitian square matri-
ces satisfying the relations α2 = β2 = 1, {α,β} = 0. The positive-
definite function |Ψ |2 = Ψ †Ψ , satisfying a continuity equation, is
interpreted as a position probability density. This interpretation is
completely satisfactory for single-particle states.

We set V to be

V = βM(x) + βγ5 P (x) + V (x) + βαA(x), (3)

where M(x) is a scalar potential, P (x) a pseudoscalar potential
and V (x) is the time-component of a Lorentzian 2-vector poten-
tial, whose space component is A(x). The space component of
the 2-vector potential can be eliminated by a gauge transforma-
tion without affecting the physics. Once we have only four lin-
early independent 2 × 2 matrices, the structure of coupling in V is
the most general one can consider in the time-independent Dirac
equation in one space dimension.

In terms of the potentials the Hamiltonian (2) becomes

H = cαp + V (x) + βM(x) + βγ 5 P (x), (4)

where γ 5 = −iα. An explicit expression for the α and β matri-
ces can be chosen from the Pauli matrices that satisfy the same
algebra. We use β = σ1, α = σ3, and thus βγ 5 = −σ2. Eq. (1) can
be decomposed into two coupled first-order differential equations,
for the upper, ψ+(x), and lower, ψ−(x), components of the spinor
Ψ (x). In a simplified notation and by using the natural system of
units h̄ = c = 1, we have

−iψ ′+ + Mψ− + V ψ+ + i Pψ− = Eψ+,

+iψ ′− + Mψ+ + V ψ− − i Pψ+ = Eψ−, (5)

where the prime stands for the derivative with respect to x.
In the case that all the potentials are real functions, the Dirac

equation is Hermitian and invariant under space-reversal (parity)

transformation. We recall that the parity transformation is an im-
proper Lorentz transformation and that the spinor in one frame
is constructed from the spinor in the other frame by means of
the relation Ψ̃ (x̃, t) = SΨ (x, t) = eiδβΨ (x, t), with x̃ = −x and δ an
overall constant phase factor. Moreover, under parity transforma-
tion, M(x) and V (x) do not change and P (x) changes its sign. The
matrices must transform as S−1β S = β and S−1αS = α.

The same transformations could be used even in the case that
the potentials are complex, but if we want the Dirac equation in-
variant under the combination of parity and time-reversal transfor-
mations this issue becomes trickier with a non-Hermitian Hamilto-
nian. This is because the time-reversal transformation implies that
T (i)T −1 = −i and that the potentials in the Hamiltonian are com-
plex. Thus, although the time-reversal does not change each part
of the potentials, since they are time-independent, it changes the
relative sign between the real and the imaginary parts of the po-
tentials; as a consequence, the imaginary part of each one of the
potentials must change under parity in the reversed form of its real
part, in order to have the Dirac equation invariant under the com-
bination of parity and time-reversal transformations. In summary,
in order to have PT-symmetry even when the potentials are com-
plex, the imaginary part of the vector and scalar potentials must
change their signs under parity, whereas the imaginary part of the
pseudoscalar potential does not change. The spinor in the time-
reversed system is obtained from the spinor Ψ̃ (x̃, t) by means of
the following the transformation Ψ̃T (x̃, t̃) = T Ψ̃ (x̃, t) = T Ψ̃ ∗(x̃, t),
with t̃ = −t and T a square matrix such that T −1β∗T = β and
T −1α∗T = −α. Then T must commute with β and anti-commute
with α, that is T ≡ β .

In the following three examples given below the potentials are
PT-symmetric, according to the above rules. Nevertheless, we have
to impose constraints over the parameters of the potentials in or-
der to have the entire spectrum real. Moreover, we show that the
eigenfunctions are also PT-symmetric. The PT-symmetry is broken,
that is, the Hamiltonian is PT-symmetric but the eigenfunctions are
not [9] whenever the constraints over the parameters are relaxed.

3. The effective PT-symmetric problem

Whenever one considers only the coupling either with the
scalar or the pseudoscalar potential, the differential equations can
be uncoupled in such a way that both components of the spinor
satisfy second-order differential equations, similar to each other
and to the Schrödinger equation. By including the coupling with
the vector potential this is no longer possible. Although, it is
possible to show that one of the components obeys a kind of
Schrödinger equation, and the other component is given in terms
of the previous one, as was done in the references in [15]. From
now on, we are going to follow that approach. By applying the
space derivative in the first of Eqs. (5) we have

−iψ ′′+ + A+ψ ′− + A′+ψ− = Bψ ′+ + B ′ψ+, (6)

where we have defined A± ≡ A±(x) = M(x) ± i P (x) and B ≡
B(x) = E − V (x). By substituting, in the above equation, the expres-
sions for ψ ′− and ψ− taken from Eqs. (5), we obtain the following
equation for the upper component

−iψ ′′+ + i
A′+
A+

ψ ′+ +
[

B A′+
A+

− B ′ + i
(

A+ A− − B2)]ψ+ = 0, (7)

and the equation obeyed by the lower component can be rewritten
as

ψ− = 1

A+
(iψ ′+ + Bψ+). (8)

We notice that by means of the redefinition of the upper compo-
nent
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