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Abstract

Using the temperature Green’s function approach we investigate entanglement between two non-interacting spin 1 bosons in thermal equilib-
rium. We show that, contrary to the fermion case, the entanglement is absent in the spin density matrix. Separability is demonstrated using the
Peres—Horodecki criterion for massless particles such as photons in black body radiation. For massive particles, we show that the density matrix

can be decomposed with separable states.
© 2006 Elsevier B.V. All rights reserved.
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Recent progress in quantum information theories and exper-
iments [1-3] has led to interests in studying the non-locality
and entanglement in many particle systems [4—16] such as Bose
Einstein condensations [17], Heisenberg model [18], fermion
systems [19,20], and superconductors [21] and even in the vac-
uum [22]. Entanglement is now treated as a physical quantity
like energy and entropy, as well as a resource for quantum
information processing. Spin 1 particles such as photons and
W and Z° gauge vector bosons are essential ingredients in
the standard model. Furthermore, black body radiation (BBR),
the historical birth place of the quantum physics, still plays
an important role in many fields such as quantum optics [23],
the black hole radiation [24] and the cosmic microwave back-
ground radiation [25]. Thus, studying entanglement of thermal
spin 1 bosons is important.

In this Letter, we use the temperature Green’s function ap-
proach to investigate the quantum entanglement of two non-
interacting (massless and massive) spin 1 boson particles in
thermal equilibrium. Vedral [19] studied the entanglement in
many body systems at zero temperature using the second quan-
tization formalism. Following his works, Oh and Kim [20] stud-
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ied the entanglement of two electron spins in a free electron
gas, superconductivity [21] and the Kondo model [26] at fi-
nite temperature using thermal Green’s function methods. In his
work, Vedral showed that there is no reason why the polariza-
tions of a pair of separated photons should be correlated at zero
temperature. At finite temperature, however, the situation be-
comes more complicated. In this case entanglement may occur
because, contrary to the intuition that thermal noise destroys
entanglement, it has been shown that even if two particles do
not interact directly, they can become entangled by interacting
with a common heat bath [27,28]. To maintain thermal equi-
librium, the thermal bosons (like photons in the BBR) should
interact with a common thermal bath, even when they are not
directly interacting with each other. Therefore we need to cal-
culate the entanglement of thermal spin 1 bosons explicitly to
check for the absence of entanglement in the systems. Recently,
it was also shown that two qubits interacting with the BBR can
be entangled [29]. In earlier works entanglement in many body
systems was usually tested indirectly by investigating the en-
tanglement of two ‘probe qubits’ interacting with the system.
In this Letter, however, we are interested in the entanglement of
the particles themselves without any probe qubit. This approach
could reveal the physical nature of the system more clearly.
We begin by briefly reviewing the Green’s function ap-
proach [30]. To calculate the entanglement we need to know the
density matrix of the system with Hamiltonian H and temper-
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ature 1/8. The finite temperature two-particle density matrix is
defined with the field operator ¥ (x;) for the ith particle;
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where (O) = Tr{pg O} with Z = Tr{e P} and pg = e P11/ Z,
and 'L’l-+ (i = 1,2) denotes a time infinitesimally later than 7;.
Using the Wick’s theorem, the two-particle temperature Green’s
function for bosons can be reduced to the product of one-
particle Green’s functions;

G(1,2;1,2") = Te{ po T [Fx (DT T @) (1]}
~G(1,1Y6(2,2) +G(1,2)G(2, 1), 2)

where the number i (i = 1,2) denotes the space—time coor-
dinates (x;, r;) of particle i, and G(1; 1") = Tr{pc T [¥k (1) -
v K(l )]} is the one-particle temperature Green’s function. The

field operator is redeﬁned as 1//1( (x,7) = eK’/hl//(x) e —Ke/
with K = H — MN where u is the chemical potential and N is
the number operator. The second equality of Eq. (2) denotes the
Hartree—Fock approximation which is exact for non-interacting
systems such as the one considered in this Letter. Then, the non-
interacting one particle Green’s function Go(1; 1) is

pV(x;x) = —G0(xt; ') = 8pprg(r — 1), 3)

where o denotes the spin index and g(r —r’) is the one-particle
space density matrix in a volume V/;
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Here nyx = {exp[B(ex — )] — 1}_1 is the mean occupation num-
ber in the state with momentum k and energy ey = h2k?/2m for
massive non-relativistic bosons or ex = fik/c for photons. With
Egs. (2) and (3), one has the explicit form for the two-particle
space-spin density matrix [31,32]
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where o; denotes the spin index for the ith particle. To the
best of our knowledge, there is still no consensus on how to
deal with entanglement between continuous variables such as
coordinates and discrete variables such as spin. Hence we set
r; =r} and ry =) to consider only discrete (spin) degrees of
freedom, which leads to a simpler form for the density matrix.
For isotropic cases, the two-spin density matrix, depending on
the relative distance between two particles r = [r; — ra/, is
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where « is the number of spin degrees of the freedom (« = 2 for
massless spin 1 bosons and 3 for massive ones). n = N/ V is the
particle density for particle number N and f(r) is an exchange

term representing the indistinguishability of bosons:
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A bipartite state p is called separable if it can be written in the
form

n
p=>_ prir ®pf, @®)
i=1

where ,oiA and piB are states of subsystem A and B, respectively.
We use the Peres—Horodecki separability criterion [33,34],
which is the positive partial transpose (PPT) criterion. A state
is PPT if p78 > 0, where the partial transposition of p is

Tp
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in some basis. Let us first consider massless particles such as
photons from BBR with two spin degrees of freedom denoted
by two level states (|0), |1)). The two-spin density matrix corre-
sponds to the two qubits density matrix in this case. By dividing
the bracket part of Eq. (6) by 442 f2, we obtain the normalized
two-spin density matrix p12 [32] for a given relative distance r
between two photons in {|00), [01), |10}, |[11)} polarization ba-
sis

1+/2 0 0 0

1 0 1 f2 0
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where Try, 4, {p12} = 1 and we have dropped r in f(r) for sim-
plicity. This matrix has the same form as for the Fermion case
except that the off-diagonal terms have plus signs [20]. One
can easily show that p1> is PPT and hence separable [35] (the
lowest eigenvalue of pszB is 1/(4 +2f?) > 0). Hence we can
conclude that there is no entanglement in the two-spin den-
sity matrix of the non-interacting massless thermal spin 1 boson
system.

What can the absence of entanglement in the BBR be
used for from a practical viewpoint? The absence of quan-
tum correlation can help us to understand the nature of cer-
tain light sources, for example, astronomical objects. By per-
forming an Aspect-type Bell test experiment [36] on polariza-
tion states of two photons from a light source and checking
for violation of the Bell inequality [37], one could determine
whether the source emits entangled photons. If this test reveals
pairs of entangled photons from the source, one can say that
the source is, at least, not a black-body radiator. Given that
information from distant astronomical objects is mainly ob-
tained by observing electromagnetic waves, this quantum test
would provide us additional useful information about the ob-
jects.

We now move on to the case of massive spin 1 particles,
which have 3 spin states (o« = 3). In this case Eq. (6) reads, in
{100y, |01), 102), |10}, ..., |22)} basis,
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