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Dissipative tachyonic Cherenkov densities are derived and tested by performing a spectral fit to the γ -ray 
flux of supernova remnant (SNR) RX J1713.7 − 3946, measured over five frequency decades up to 100 TeV. 
The manifestly covariant formalism of tachyonic Maxwell–Proca radiation fields is developed in the 
spacetime aether, starting with the complex Lagrangian coupled to dispersive and dissipative permeability 
tensors. The spectral energy and flux densities of the radiation field are extracted by time averaging, 
the energy conservation law is derived, and the energy dissipation caused by the complex frequency-
dependent permeabilities of the aether is quantified. The tachyonic mass-square in the field equations 
gives rise to transversally/longitudinally propagating flux components, with differing attenuation lengths 
determined by the imaginary part of the transversal/longitudinal dispersion relation. The spectral fit is 
performed with the classical tachyonic Cherenkov flux radiated by the shell-shocked electron plasma of 
SNR RX J1713.7 − 3946, exhibiting subexponential spectral decay.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Decay is inherent in all composite matter, and the spacetime 
structure employed in physical modeling should reflect this fact. 
Here, we consider tachyonic wave propagation in a dissipative 
spacetime, the physical manifestation of the all-pervading aether. 
The aim is to quantify the effect of absorption on the spectral de-
cay of radiation densities, to develop the general formalism and 
work out a specific example, dissipative tachyonic Cherenkov radi-
ation [1–9], and to probe the decaying energy flux by performing a 
spectral fit to the γ -ray emission from an ultra-relativistic plasma. 
For the latter, we consider the shock-heated electron population of 
a supernova remnant.

To this end, we start with the complex Lagrangian of a 
Maxwell–Proca field coupled to dissipative permeability tensors, 
manifestly covariantly in a frequency-space representation. In con-
trast to non-dissipative real permeabilities, the complex dispersion 
relations unambiguously determine the retarded/advanced Green 
function without epsilon regularization. We derive the energy con-
servation law for the dissipating radiation field, and identify the 
spectral densities of field energy and Poynting vector by time av-
eraging. In this way, we can also quantify the energy absorption 
induced by the complex permeabilities and the complex tachy-
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onic mass-square in the field equations. The attenuation lengths 
defining the damping factor in the classical tachyonic Cherenkov 
densities differ for transversal and longitudinal radiation. We aver-
age these densities over a relativistic electron gas and put them 
to test by performing a spectral fit to the supernova remnant 
RX J1713.7 − 3946, whose γ -ray flux has been measured by the 
Fermi satellite [10] and the ground-based atmospheric imaging ar-
ray HESS [11,12]. The spectral fit covers five frequency decades, 
the GeV range up to 100 TeV.

In Section 2, we introduce the tachyonic Maxwell–Proca La-
grangian in the absorptive spacetime aether described by complex
frequency-dependent permeability tensors. We explain the mean-
ing of the complex Lagrangian and the manifestly covariant action 
functional, and derive the field equations and the constitutive re-
lations, manifestly covariantly and also in 3D. In Section 3, we 
derive the continuity equation for the field energy in the aether 
defined by homogeneous and isotropic permeabilities, and extract 
the spectral energy flux by time averaging. In Section 4, we sep-
arate the transversal and longitudinal components of the tachy-
onic radiation field to obtain explicit formulas for the dissipating 
transversal/longitudinal energy and flux densities.

In Section 5, we derive the dispersion relations from the wave 
equations for the transversal and longitudinal vector potentials, as 
well as asymptotic formulas for the complex transversal/longitu-
dinal wavenumbers by ascending series expansion in the imagi-
nary parts of the permeabilities. In Section 6, we discuss spherical 
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wave propagation in the aether, employing transversal/longitudi-
nal Green functions in space-frequency representation. In contrast 
to a non-absorptive spacetime, the Green function, retarded or 
advanced, is already determined by the imaginary part of the dis-
persion relation, without the use of epsilon regularization of pole 
singularities prescribing residual integration paths. We use the re-
tarded Green function in dipole approximation to obtain the atten-
uated radiation fields at large distance from the localized source.

In Section 7, we calculate the classical tachyonic Cherenkov 
densities of an inertial subluminal charge in the dissipative aether. 
There are two different ways to derive the Cherenkov effect. In Fer-
mi’s approach, one considers the radiating charge moving along an 
infinite straight line, solves the field equations in cylindrical coor-
dinates, and calculates the flux streaming orthogonally through a 
cylinder around the particle trajectory [3,4]. A preferable method 
due to Tamm is to consider the trajectory within a finite time 
interval, so that the current distribution is compact. The time-
averaged asymptotic flux through a large sphere is then calculated 
in dipole approximation, and the averaging period is finally ex-
tended to infinity to remove the bremsstrahlung contribution oc-
curring at the end points of the truncated trajectory [13,14]. This 
bremsstrahlung vanishes with increasing averaging period and is 
not to be confused with photonic bremsstrahlung which can arise 
in the weakly coupled plasma of the remnant [15–17]. The asymp-
totic spherical symmetry of Tamm’s method is better adapted to 
the radiation problem studied here than an infinite cylindrical ge-
ometry. In Section 8, we average the transversal/longitudinal radi-
ation densities over an ultra-relativistic thermal electron gas and 
perform a tachyonic Cherenkov fit to the γ -ray emission of SNR 
RX J1713.7 − 3946. In Section 9, we present our conclusions.

2. Maxwell–Proca Lagrangian in an absorptive spacetime

Throughout this article, we use a frequency-space representa-
tion of the real Proca field Âμ(x, ω) = ∫ ∞

−∞ Aμ(x, t)eiωt dt , suit-
able for dispersive and dissipative permeabilities [18–21]. Time 
Fourier transforms are denoted by a hat, and the reality condition 
is Â∗

μ(x, ω) = Âμ(x, −ω). We start with the formally manifestly 
covariant Maxwell–Proca Lagrangian

L̂ = −1

4
F̂ ∗
μν gμα

F gνβ
F F̂αβ + 1

2
m2

t Â∗
μgμν

A Âν

+ 1

2

(
Â∗

μgμν
J ĵν + Âμgμν

J ĵ∗ν
)
, (2.1)

where F̂μν(x, ω) is the Fourier transform of the field tensor Fμν =
Aν,μ − Aμ,ν . Time differentiation in Fourier space means to mul-
tiply with a factor −iω, e.g. Âμ,0 = −iω Âμ and Â∗

μ,0 = iω Â∗
μ for 

conjugated fields. Greek indices are raised and lowered with the 
Minkowski metric ημν = diag(−1, 1, 1, 1). The permeability ten-
sors gμν

A,F , J (ω) are homogeneous and isotropic, satisfying the re-

ality condition g∗μν
A,F , J (ω) = gμν

A,F , J (−ω) like the complex perme-
abilities (ε0(ω), μ0(ω)), (ε(ω), μ(ω)) and Ω(ω) defining them,

g00
A = −ε0, gij

A = δi j

μ0
,

g00
F = −μ1/2ε, gij

F = δi j

μ1/2
, (2.2)

and g0i
A,F = 0. The tensor gμν

J (ω) = ημν/Ω(ω) is conformal to the 
Minkowski metric and amounts to a frequency-dependent coupling 
constant. All permeabilities have a positive real part, and principal 
values are assumed for roots. We use the Heaviside–Lorentz sys-
tem, so that ε = ε0 = 1 and μ = μ0 = 1 in vacuum. The complex 
frequency-dependent tachyon mass mt(ω) in the Lagrangian sat-
isfies mt(−ω) = m∗

t (ω), with positive real part. The mass-square 

can be scaled into gμν
A (ω), cf. Section 3. The external current is 

conserved, ĵν,ν = 0 (that is ĵm
,m − iω ĵ0 = 0) and satisfies the real-

ity condition. Lagrangian (2.1) is real only if the permeabilities and 
the tachyon mass are real, in the absence of absorption.

We define the inductive fields Ĥαβ = gαμ
F gβν

F F̂μν and Ĉμ =
gμν

A Âν , as well as the dressed current ĵμΩ = gμν
J ĵν , which are the 

manifestly covariant constitutive relations in the absolute space-
time. Euler variation of the Lagrangian with respect to Â∗

μ gives 
the field equations Ĥμν

,ν − m2
t Ĉμ = ĵμΩ . Differentiation followed 

by contraction leads to the Lorentz condition Ĉμ
,μ = 0, as the cur-

rent is conserved. Variation of the Lagrangian with respect to Âμ

results in a different set of field equations, where the permeabil-
ity tensors and the mass-square are replaced by the conjugated 
quantities, gμν

A,F , J (ω) → g∗μν
A,F , J (ω), mt(ω) → m∗

t (ω). The imaginary 
parts of the permeability tensors and the tachyon mass deter-
mine whether the Green function is retarded or advanced, cf. Sec-
tions 5.2 and 6.1. (In contrast to real permeabilities, there are no 
poles on the real axis to be circumvented by epsilon regulariza-
tion, that is, by an infinitesimal ± sign(ω)iε or ±iε insertion in the 
denominator of the Green function in momentum space, cf. Sec-
tion 6.) For any given frequency ω, either (gμν

A,F , J , mt) or the con-

jugated quantities (g∗μν
A,F , J , m

∗
t ) define retarded wave propagation, 

and we use the corresponding wave equation at this frequency. 
For the sake of definiteness, we will consider a frequency interval 
in which (gμν

A,F , J , mt) gives retarded propagation.
If the permeability tensors and the tachyon mass are real and 

constant (frequency-independent), we can use a spacetime repre-
sentation of the Lagrangian,

L = −1

4
Fμν Hμν + 1

2
m2

t AμCμ + Aμ jμΩ, (2.3)

resulting in the action S = ∫
Ldxdt = (2π)−1

∫
L̂dxdω, with L̂ in 

(2.1). In the case of complex frequency-dependent permeabilities, 
we employ the second identity to define the action. S is real since 
L̂(x, −ω) = L̂∗(x, ω) and does not change if we replace Lagrangian 
(2.1) by its complex conjugate, which means to replace (gμν

A,F , J , mt) 
by (g∗μν

A,F , J , m
∗
t ).

The 3D field strengths are Êk = F̂k0 = iωAk + A0,k and B̂k =
εki j F̂ i j/2 = εki j Â j,i , and inversely F̂ i j = εi jk B̂k , where εki j is the 
Levi-Civita 3-tensor. The 3D inductions are defined by the consti-
tutive relations D̂l = Ĥ0l = ε Êl and Ĥi = εikl Ĥkl/2 = B̂ i/μ, as well 
as Ĉm = Âm/μ0 and Ĉ0 = ε0 Â0 for the potential, cf. after (2.2). The 
charge densities ρ̂ = ĵ0 and ρ̂Ω = ĵ0

Ω of external and dressed cur-
rent are related by ρ̂Ω = ρ̂/Ω , and the respective 3-currents by 
ĵk
Ω = ĵk/Ω . The 3D inhomogeneous field equations read

εklj Ĥ j,l + iωD̂k − m2
t Ĉk = ĵk

Ω, D̂l
,l − m2

t Ĉ0 = ĵ0
Ω. (2.4)

The homogeneous Maxwell equations follow from the above 
potential representation of the field strengths, and we also men-
tion conservation of the dressed current and the Lorentz condition,

εikn Ên,k − iω B̂ i = 0, B̂ i
,i = 0,

iω ĵ0
Ω − ĵk

Ω,k = 0, iωĈ0 − Ĉ l
,l = 0. (2.5)

The rising and lowering of the zero index is accompanied by a 
sign change, as we use the sign convention diag(−1, 1, 1, 1) for 
the Minkowski metric.

3. Tachyonic Poynting vector and dissipative energy density

To derive the energy conservation law in an absorptive space-
time [22–25], we employ the inhomogeneous field equations (2.4), 
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