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We decouple the Dirac’s radial equations in D + 1 dimensions with Coulomb-type scalar and vector 
potentials through appropriate transformations. We study each of these uncoupled second-order 
equations in an algebraic way by using an su(1, 1) algebra realization. Based on the theory of irreducible 
representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov 
coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of 
the su(1, 1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the 
inverse original transformations to the Sturmian coherent states.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since Schrödinger introduced the harmonic oscillator coherent states [1], they have played a fundamental role in quantum mechanics. 
These coherent states are related to the Heisenberg–Weyl group. The works of Barut [2] and Perelomov [3] generalized the harmonic 
oscillator coherent states to those of any algebra of a symmetry group.

The coherent states have been obtained successfully for many problems, reported in the references [4–8]. Related to the Perelomov 
coherent states for the su(2) and su(1, 1) Lie algebras, several works have been published, some of them are [9–11].

As one of the few exactly solvable problems in physics, the Kepler–Coulomb problem has been treated in several ways, analytical 
[12–15], factorization methods [16,17], shape-invariance [18], SUSY QM for the first [19] and second-order [20] differential equations, two-
variable realizations of the su(2) Lie algebra [21] and using the Biedenharn–Temple operator [22]. Its solubility is due to the conservation 
of the total angular momentum, and the Dirac and Johnson–Lippmann operators [23]. In fact, is has been shown that the supersymmetry 
charges are generated by the Johnson–Lippmann operator [23]. Joseph was the first in studying the Kepler–Coulomb problem in D + 1
dimensions by means of self-adjoint operators [24]. The energy spectrum and the eigenfunctions of this problem were obtained by solving 
the confluent hypergeometric equation [25,26]. Moreover, in [27] the Johnson–Lippmann operator for this potential has been constructed 
and used to generate the SUSY charges.

The Dirac equation with Coulomb-type vector and scalar potentials in 3 + 1 dimensions has been solved by using SUSY QM [28] and 
the matrix form of SUSY QM based on intertwining operators [29]. For the (D + 1)-dimensional case it was treated by reducing the 
uncoupled radial second-order equations to those of the confluent hypergeometric functions [25,26]. In recent works, it has been studied 
the Dirac equation for the three-dimensional Kepler–Coulomb problem [30], and with Coulomb-type scalar and vector potentials in D + 1
dimensions from an su(1, 1) algebraic approach [31]. Also, a Johnson–Lippmann operator has been constructed for Coulomb-type scalar 
and vector potential in general spatial dimensions. It was used to generate the SUSY charges [32].

In the relativistic regimen the spectrum of the Klein–Gordon Coulomb problem was calculated by using the S O (2, 1) coherent-state 
theory [33]. For the Dirac problem, only the coherent states for the three-dimensional relativistic Kepler–Coulomb potential have been 
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treated [34]. This study was based on the fact that the uncoupled second-order differential equations admits a two-variable SU(2) symme-
try. The additional variable to the radial coordinate was needed in order to close the su(2) Lie algebra [21]. We notice that in references 
[33,34] the explicit closed form of the relativistic coherent states have not been obtained. However, there are no works on relativistic 
coherent states in which scalar and vector potentials are considered, in three or higher spatial dimensions.

The aim of the present work is to construct the radial SU(1, 1) Perelomov coherent states for the relativistic Kepler–Coulomb problem in 
D +1 dimensions with Coulomb-type scalar and vector potentials. Our treatment is restricted for bound states. We decouple the first-order 
Dirac equations to obtain the second-order differential equations. Each of these equations is written in terms of a set of radial operators 
which close the su(1, 1) Lie algebra. One of these operators is the so-called scaling operator. By an appropriate choice of the scaling 
parameter we diagonalize the second-order radial equation. We use the theory of unitary representations to find the energy spectrum and 
the radial wave functions from the Sturmian basis (group basis). We construct the SU(1, 1) Perelomov coherent states for the Sturmian 
basis and the inverse transformations are applied to these states to obtain the radial SU(1, 1) Perelomov coherent states for the relativistic 
Kepler–Coulomb problem.

This work is organized as follows. In Section 2 we obtain the uncoupled second-order differential equations satisfied by the radial 
components. The su(1, 1) Lie algebra generators for the uncoupled second-order differential equations are introduced. The energy spectrum 
and radial wave functions are found. In Section 3, we obtain the explicit expression of SU(1, 1) Perelomov coherent states for the relativistic 
Kepler–Coulomb problem in D + 1 dimensions with scalar and vector potentials. Finally, we give some concluding remarks.

2. Second order radial equations

The Dirac equation in D + 1 dimensions for a central field is given by [26]

i
∂Ψ

∂t
= HΨ, H =

D∑
a=1

αa pa + β
(
m + V s(r)

) + V v(r), (1)

with h̄ = c = 1, m is the mass of the particle, V s and V v are the spherically symmetric scalar and vector potentials, respectively and

pa = −i∂a = −i
∂

∂xa
1 ≤ a ≤ D. (2)

In (1), αa and β satisfy the anticommutation relations

αaαb + αbαa = 2δab1,

αaβ + βαa = 0,

α2
a = β2 = 1. (3)

In D spatial dimensions, the orbital angular momentum operators Lab , the spinor operators Sab and the total angular momentum 
operators Jab are defined as

Lab = −Lba = ixa
∂

∂xb
− ixb

∂

∂xa
, Sab = −Sba = i

αaαb

2
, Jab = Lab + Sab.

L2 =
D∑

a<b

L2
ab, S2 =

D∑
a<b

S2
ab, J 2 =

D∑
a<b

J 2
ab, 1 ≤ a ≤ b ≤ D. (4)

Hence, for a spherically symmetric potential, the total angular momentum operator Jab and the spin–orbit operator K D =
−β( J 2 − L2 − S2 + (D−1)

2 ) commute with the Dirac Hamiltonian. For a given total angular momentum j, the eigenvalues of the oper-
ator K D are κD = ±( j + (D − 2)/2), where the minus sign is for aligned spin j = � + 1

2 , and the plus sign is for unaligned spin j = � − 1
2 .

We propose the Dirac wave function of Eq. (1) to be of the form

Ψ (�r, t) = r− D−1
2

( FκD (r)Y �
jm(ΩD)

iGκD (r)Y �′
jm(ΩD)

)
e−iEt, (5)

being FkD (r) and GkD (r) the radial functions, Y �
jm(ΩD) and Y �′

jm(ΩD) the hyperspherical harmonic functions coupled with the total angular 
momentum quantum number j, and E the energy. Thus, Eq. (1) leads to the radial equations( dFκD

dr
dGκD

dr

)
=

( − κD
r V s − V v + m + E

V v + V s + m − E κD
r

)(
FκD

GκD

)
. (6)

We consider the Coulomb-type scalar and vector potentials

V v = −αv

r
, V s = −αs

r
, (7)

with αv and αs positive constants. Therefore, from Eq. (6) we obtain( dFkD
dr

dGkD
dr

)
+ 1

r

(
kD αv − αs

αv + αs −kD

)(
FkD

GkD

)
=

(
0 m + E

m − E 0

)(
FkD

GkD

)
. (8)
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