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An eigen-equation of plasmon excitation in confined quasi-one-dimensional systems is presented. 
Besides dipole plasmons, quadrupole plasmons are found in the systems by comparing the eigen-
solutions with the dipole response. For both dipole and quadrupole plasmons, the plasmon frequencies 
decrease with the increase of the system’s length, and their size dependence can be well fitted by 
the plasmon dispersion in the infinite systems calculated by the random phase approximation. Through 
extensively studies of eigen-charge density and induced charge density, we find that quadrupole plasmon 
corresponds to symmetric charge density distribution, and can only be excited by non-uniform electric 
field.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The technology of precise manipulation of single atoms through 
a scanning tunneling microscope (STM) [1–3] makes it possible to 
experimentally investigate the electromagnetic response properties 
of the isolated nanostructure with few atoms. Collective excitations 
in low-dimensional nanostructures, such as nanowires and linear 
atomic chains, have been extensively studied [4–14]. In experi-
mental studies, plasmon excitations have already been sensitively 
detected in nanorods and atomic wires in infrared spectroscopy; 
[4,5] in theoretical and simulation studies, plasmon excitations 
have been widely investigated in one-dimensional (1D) atomic sys-
tems based on the random-phase approximation (RPA) [7,8] and 
the time-dependent density functional theory (TDDFT) [9–14]. Re-
cent investigations for the plasmon excitations in nanoscale clus-
ters, plasmon modes are generally identified with the examination 
of either the dipole [7–14] and multipole [15,16] absorption spec-
trum, or other characters of plasmon resonances [17] induced by 
an external-field. However, the plasmon modes found by these 
ways are dependent on the applied external-field. This is impli-
cated in Refs. [10,11], which show that a longitudinal field induces 
a longitudinal-mode plasmon resonance, and a transverse field in-
duces a transverse resonance. On the other hand, the investigations 
of the collective excitations in one-dimensional atomic chain fo-
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cused on dipole plasmons [7–14], and quadrupole plasmons have 
not yet been discussed. Different from the dipole plasmon, the 
quadrupole plasmon is a subradiative plasmon resonance mode 
which weakly couples to the incident light [18,19], so it is diffi-
cult to be excited by the incident light. The quadrupole plasmon 
may be excited via the near-field interaction [20–25] and retarda-
tion effects [26]. Quadrupole plasmons have been widely studied 
in a lot of nano-structure systems [15,16,27–40], however, in 1D 
atomic chain systems, they have not been reported.

In this paper, we use an eigen-equation approach to study 
the plasmon excitations in confined quasi-one-dimensional elec-
tron gas (Q1DEG) systems. The eigen-equation method has been 
used to calculate plasmon excitation in finite condensed-matter 
systems [41–45], and the plasmon modes found by this way are 
independent on the applied fields. We seek all plasmon modes 
in the Q1DEG systems by the eigen-equation, and then compare 
the eigen-plasmon with the dipole plasmon which obtained by the 
dipole response. Besides the dipole plasmons, the quadrupole plas-
mons are found in the systems. Unlike the dipole mode that cor-
responds to the anti-symmetric charge oscillation, the quadrupole 
mode corresponds to the symmetric charge oscillation. The dipole 
plasmon can be excited by both uniform and non-uniform elec-
tric fields and is shown as a consequence of the resonance of 
the dipole response. But the quadrupole plasmon can only be 
excited by non-uniform electric fields and is shown as a conse-
quence of the quadrupole resonance. The dispersions of plasmons 
have been investigated. As demonstrated in Refs. [7–14], the plas-
mon is highly sensitive to the size of the system due to the local 
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confinement of atoms. Our results show that there are more plas-
mons in longer systems, and the plasmon frequencies decrease 
with the increase of the system’s length. Furthermore, the dipole 
response and quadrupole response as functions of the system’s 
length are discussed. With the increase of the system’s length, 
the redshift of resonance frequency is found, and the intensities 
of dipole response and quadrupole response are increased.

The rest of this paper is organized as follows. In Section 2 we 
present the eigen-equation approach based on the quantum linear 
response and electromagnetic theory, and show in detail the ap-
plication of this approach to the confined Q1DEG model systems. 
In Section 3 we present the results of numerical calculations and 
discussions about the excitation spectra of various Q1DEG systems. 
A brief summary is given in Section 4.

2. Theoretical approach and model

We will start with presenting the plasmon eigen-equation on 
the base of the quantum linear response and the electromagnetic 
theory. The quasi-one-dimensional (Q1D) system under investiga-
tion is formed by a virtual atomic chain with width 2a and length 
of L = Na, where N = (Na +1), Na is the numbers of virtual atoms, 
a is virtual lattice-constant. The ground electronic states of the 
Q1D system are modeled by the eigen-waves confined within an 
infinite wall in the x–y plane, where x and y is the direction 
parallel and perpendicular to the atomic chain respectively. The 
eigen-wave-function of the system can be written as

Ψm(x, y) =
√

2

Na
sin

mπx

Na
sin

(
π y

2a

)
, (1)

where m is the wave number, m = 1, 2, 3, . . . , Na . According to 
the quantum linear response theory, when an external potential 
V ex(r, ω) is applied to the Q1D system, the induced charge den-
sity is

ρ in(r,ω) = e2
∫

Π
(
r, r′,ω

)(
V ex(r′,ω

) + V in(r′,ω
))

dr′, (2)

where e is the unit charge, V in(r, ω) is the induced inner potential. 
Π(r, r′, ω) is Lindhard function

Π
(
r, r′,ω

) = 2
∑
mn

f (Em) − f (En)

Em − En − ω − iγ
Ψm(x, y)Ψn(x, y)

× Ψm
(
x′, y′)Ψn

(
x′, y′), (3)

where Em and En is the eigen-energy of the eigen-state Ψm(r) and 
Ψn(r), γ is the damping constant. f (Em) is the Fermi distribution 
function, for zero temperature, it is unity in the case of m < Nm , 
and zero in the case of m > Nm , where Nm is the occupation num-
ber of the energy state. We define

ρmn(r) =Ψ ∗
m(r)Ψn(r), (4)

and

Vn,m(ω) =
∫

dr′ρnm
(
r′)V

(
r′,ω

)
. (5)

Taking Eq. (4) and (5) into Eq. (2), we have

ρ in(r,ω) = 2e2
∑
mn

f (Em) − f (En)

Em − En − ω − iγ

× ρmn(r)
[
V ex

n,m(ω) + V in
nm(ω)

]
. (6)

On the other hand, based on the electromagnetic theory, the in-
duced inner potential is given by

V in(r,ω) =
∫

dr′ ρ in(r′,ω)

4πε0|r − r′| . (7)

As shown in Ref. [8], from Eqs. (2) and (7), the excitation frequency 
can be solved self-consistently by iterating V in(r′, ω) and ρ in(r′, ω)

with a given initial external potential V ex(r′, ω). However, here we 
want to use an equivalent method to avoid large numerical and 
iterating calculations. Substituting Eq. (6) in Eq. (7), then multiply-
ing ρn′m′ (r) at two sides of Eq. (7) and making an integral over the 
space as done in Eq. (5), we derive the oscillation equation for the 
induced potential

∑
mn

[
δm′n′,nm − Am′n′,mn(ω)

]
V in

nm(ω) =
∑
mn

Am′n′,mn(ω)V ex
n′m′(ω),

(8)

with

Am′n′,mn(ω)

= 2e2 f (Em) − f (En)

Em − En − ω − iγ

∫
dr′

∫
dr

ρn′m′(r)ρmn(r′)
4πε0|r − r′| . (9)

To solve the oscillation equation of the system without the in-
fluence of external potential, we take V ex

nm(ω) = 0 in Eq. (8), and 
obtain the eigen-equation for the plasmon oscillation

∑
mn

[
δm′n′,nm − Am′n′,mn(ω)

]
V in

nm(ω) = 0. (10)

According to the eigen-equation (10), the plasmon excitation fre-
quency ω can be solved by

det
[
δm′n′,nm − Am′n′,mn(ω)

] = 0. (11)

However, due to the finite small imaginary part iγ , the practical 
calculation of plasmon excitation energy �ω is carried out by the 
following equations,

Re
(
det

[
δm′n′,nm − Am′n′,mn(ω)

]) = 0, (12)

with

Im
(
det

[
δm′n′,nm − Am′n′,mn(ω)

]) ∼ 0. (13)

Eqs. (12) and (13) imply that A(N, Nm, ω) = Im(1/ det[δm′n′,nm −
Am′n′,mn(ω)]) shows a peak at the plasmon frequency ω. Here we 
want to make clear that (13) should be exact zero for iγ = i0+ , 
and A(N, Nm, ω) will give an infinite peak at the plasmon fre-
quency. However, for a realistic system the electrons always suffer 
some scattering, and γ can be understood as a scattering rate 
which makes the energy of plasmon a broadening. In this case, in 
general, Eq. (11) would have no real eigen-solutions for plasmon 
frequency ω, and ω would have a imaginary part corresponding to 
the decay time of plasmon. Equivalently, here we use Eq. (12) to 
give a real plasmon frequency which can be found at a finite peak 
of A(N, Nm, ω).

In the long wave length (q → 0) limit, the plasmon dispersion 
calculated by the RPA in an infinite Q1D system is given by [46]

ωp ≈ qaω0
∣∣ln(qa)

∣∣1/2 + O
(
q2) (14)

with ω0 = √
2ne2/m∗

e a2 and n is the electron density. However, 
in our calculations for finite Q1D system, the wave length is dis-
crete and scales as q ∝ 1

(Na+1)a , the electron density scales as n ∝
1

(Na+1)a . So, keeping the numbers of electrons in the system fixed, 
the plasmon frequency is expected to scale as (Na +1)−3/2| ln(Na +
1)|1/2; while keeping the electron density fixed, the plasmon fre-
quency is expected to scale as (Na + 1)−1| ln(Na + 1)|1/2.
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