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The one-dimensional spin 1 bilinear–biquadratic model is re-expressed in a symmetrically frustrated
SU(3) model, which facilitates us to introduce a fermionic representation and related bond-operator
mean-field theory. By analyzing the gap and the static spin susceptibility, we shows that this treatment
can easily capture the commensurate and incommensurate Haldane gap phases.
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One-dimensional quantum antiferromagnets exhibit fascinating
properties in many situations [1]. The spin 1 bilinear–biquadratic
chain is extensively studied in the context of Haldane gap phase
[2–8]. Intensive studies based on both theoretical analysis and nu-
merical simulations have been able to reveal their delicate prop-
erties and the well-known properties have become the testing
ground for various methods. In a previous study, we had proposed
a class of symmetrically frustrated SU(N) models for quantum
magnets, and developed a corresponding bond-operator mean-field
theory to solve it [9]. Although the theory is not restricted to the
dimensionality and we had applied it to the two-dimensional anti-
ferromagnets [10], but how good is such a mean-field type theory
for one-dimensional systems? Here we apply it to the famous Hal-
dane chain problem to show the main properties of the system is
well described by this simple mean-field theory.

The generalized frustrated SU(N) model reads

H = J1

∑
〈i j〉,μν

J μ
ν (ri)J ν

μ(r j) − J2

∑
〈i j〉,μν

J μ
ν (ri)J μ

ν (r j), (1)

where J1 and J2 are two coupling constants for nearest neigh-
bors, J μ

ν (ri)’s are the N2 −1 generators of SU(N) group and satisfy
the algebra [J α

β (ri), J μ
ν (r j)] = δi j(δ

α
ν J μ

β (ri) − δ
μ
β J α

ν (ri)). The first
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term exhibits the SU(N) symmetry [11]. While the second term
exhibits SU(N) symmetry only on bipartite lattices. The existence
of both terms makes the model deviate from the SU(N) symme-
tries [9]. One can choose J μ

ν (ri) as the fundamental representation
with a single box in Young tableau. We introduce a set of creation
and annihilation operators to rewrite the Hamiltonian in the sec-
ond quantization representation. In the SU(N) representation each
site has N quantum states |μ〉 so that we may introduce N pairs of
operators f †

iμ and f iμ: |i,μ〉 = f †
iμ| 〉 with the vacuum state | 〉 at

site i. In this way we can construct the operator, J μ
ν (ri) ≡ f †

iν f iμ ,

with a constraint for single occupancy,
∑N

μ=1 f †
iμ f iμ = 1, on each

site. This is the so-called hard-core condition even if the particles
are bosons. Interestingly it is found that the generators satisfy the
SU(N) algebra for either bosonic or fermionic representation. So
the Hamiltonian is rewritten as

H = J1

∑
〈i j〉

Pij − J2

∑
〈i j〉

B†
i j Bi j +

∑
i

λi

(∑
μ

f †
iμ f jμ − 1

)
, (2)

where Pij ≡ ∑
μν J μ

ν (ri)J ν
μ(r j) serves as the permutation opera-

tor, the bond pairing operator Bij = ∑
μ f jμ f iμ and the Lagrangian

multipliers λ j are introduced to realize the constraint of single
occupancy. The permutation operator can be expressed as Pij =∑

μν f †
iμ f iν f †

jν f jμ = ς :F †
i j F i j : with Fij = ∑

μ f †
jμ f iμ , where : : de-
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notes normal ordering of operators, and ς = 1 for bosons and −1
for fermions. For N = 2,3,4, the model above is equivalent to the
spin 1/2 X X Z model, the spin 1 bilinear–biquadratic model, and
the SU(2) × SU(2) spin–orbital model [12], respectively. Here we
focus on the case of N = 3, i.e. we study the Haldane-gap phase of
the one-dimensional spin 1 bilinear–biquadratic model. We choose
fermionic representation, i.e. { f iμ, f †

jν} = δi jδμν , and the reason
will be discussed appropriately later.

For spin 1, each site has three states |mi〉 with mi = −1,0,+1
according to the eigenvalues of Sz

i . We reorganize the three states
and define three operators,

f †
i1|0〉 = i√

2

(|mi = −1〉 + |mi = 1〉), (3)

f †
i2|0〉 = |mi = 0〉, (4)

f †
i3|0〉 = 1√

2

(|mi = −1〉 − |mi = 1〉). (5)

In terms of f operators, the three spin operators can be written as

Sx
i = ψ

†
i Ω

xψi, (6)

S y
i = ψ

†
i Ω

yψi, (7)

Sz
i = ψ

†
i Ω

zψi, (8)

where

ψ
†
i = (

f †
i1 f †

i2 f †
i3

)
, (9)

Ωx =
( 0 −i 0

i 0 0
0 0 0

)
, Ω y =

(0 0 0
0 0 −i
0 i 0

)
,

Ω z =
( 0 0 i

0 0 0
−i 0 0

)
. (10)

Then, up to a constant, the above model is transformed to the
spin 1 bilinear–biquadratic model,

H = Jφ
∑
〈i j〉

[
cosφ Si · S j + sinφ(Si · S j)

2], (11)

with the couplings transformed as J1 = Jφ cosφ and J2 = Jφ ×
(cos φ − sin φ). Its ground state phase diagram has been estab-
lished in great detail [7]. The gapped phase of Eq. (11) can be
divided into two intervals: the “commensurate” Haldane phase for
−π/4 < φ < φVBS and the “incommensurate” Haldane phase for
φVBS < φ < π/4, where φVBS = tan−1 1/3 is the valence-bond-solid
(VBS) point [13]. It can be analyzed by the shifting peak of the
static spin susceptibility χ(q,ω = 0).

As we mentioned above, we choose fermionic representation.
This choice is related to the mean fields and the decomposition
scheme we are going to introduce. We define the two mean fields
as the thermodynamic average of the bond operators, F = 〈Fij〉 and
B = i〈Bij〉, i = √−1. Now that we have non-negative decomposi-
tions,

:F †
i j F i j: � 0, (12)

B†
i j Bi j � 0, (13)

and we are dealing with the Haldane gap phase with J1, J2 > 0,
we had to take ς = −1 (i.e. the fermionic representation) to make
sure that

Pij = ς J1:F †
i j F i j: � 0, (14)

− J2 B†
i j Bi j � 0, (15)

so that nonzero mean fields are reasonable to mimic the low
energy sectors of the Hamiltonian (2). In this case, we say the
decomposition scheme is semi-negative and the mean fields are
nontrivial if nonzero mean fields solutions are presented in the
end.

The Hubbard–Stratonovich transformation [14] is performed to
decouple the Hamiltonian into a bilinear form. The chemical poten-
tial λi is taken to be site-independent, λi = λ, which can be also
regarded as a mean field. In the momentum space the mean-field
Hamiltonian is

H =
∑
k,μ

ε(k) f †
kμ fkμ − 1

2

∑
k

�B(k)
(

fkμ f−kμ + f †
−kμ f †

kμ

)
− λNΛ + NΛ J1 F 2 + NΛ J2 B2, (16)

where ε(k) = λ − �F (k), NΛ is the total number of lattice sites,
and we have defined

�F (k) = 2 J1 F cos k; (17)

�B(k) = 2 J2 B sin k. (18)

The Hamiltonian (16) is of a Bardeen–Cooper–Schrieffer (BCS) type
and needs to be diagonalized. By performing the Bogoliubov trans-
formation,

γkμ = uk fkμ − vk f †
−kμ; γ

†
−kμ = uk f †

−kμ + vk fkμ (19)

with the coherence factors satisfying

u2
k = 1

2

[
1 + ε(k)

ω(k)

]
, (20)

v2
k = 1

2

[
1 − ε(k)

ω(k)

]
, (21)

2uk vk = �B(k)

ω(k)
, (22)

one can diagonalize the Hamiltonian as

H =
∑
k,μ

ω(k)γ
†

kμγkμ + E0, (23)

where the spectrum and the ground state energy are

ω(k) =
√

ε(k)2 + �2
B(k), (24)

E0 = −3

2

∑
k

ω(k) + 1

2
λNΛ + NΛ J1 F 2 + NΛ J2 B2. (25)

We have N = 3 degenerate spectra for quasi-fermions. By optimiz-
ing the free energy

F = − 3

β

∑
k

ln
(
1 + e−βω(k)

) + E0 (26)

with respect to the mean fields F , B , and λ, we obtain a set of the
mean-field equations,∫

dk

2π

ε(k)

ω(k)
tanh

βω(k)

2
= 1

3
, (27)

3

2

∫
dk

2π

−ε(k) cos k

ω(k)
tanh

βω(k)

2
= F , (28)

3

2

∫
dk

2π

�B(k) sin k

ω(k)
tanh

βω(k)

2
= B. (29)

Thus the mean-field Hamiltonian is solved together with the self-
consistent equations for the three types of mean fields.
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