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We present a bi-directional cellular automaton (CA) model for facing traffic of pedestrians on a wide
passage. The excluded-volume effect and bi-directionality of facing traffic are taken into account. The
CA model is not stochastic but deterministic. We study the jamming and freezing transitions when
pedestrian density increases. We show that the dynamical phase transitions occur at three stages with
increasing density. There exist four traffic states: the free traffic, jammed traffic 1, jammed traffic 2, and
frozen state. At the frozen state, all pedestrians stop by preventing from going ahead each other. At three
transitions, the pedestrian flow changes from the free traffic through the jammed traffic 1 and jammed
traffic 2, to the frozen state.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, pedestrian and vehicular traffic flows have attracted
considerable attention [1–5]. Many observed dynamical phenom-
ena in pedestrian and traffic flows have been successfully repro-
duced with physical methods. The pedestrian flow dynamics is
closely connected with the self-driven many-particle system [6].
It has also encouraged physicists to study evacuation processes by
self-driven many-particle models [7–13]. The pedestrian and ve-
hicular traffic models have been applied to the traffic flow of such
mechanical mobile objects as robots [14,15].

The typical pedestrian flows have been simulated by the use of
a few models in two-dimensional space: the lattice-gas model of
biased-random walkers [11–16], the molecular dynamic model of
active walkers [6,10,17], and the cellular automaton model [7,8].
Their models are not deterministic but stochastic. Their models
are described in two-dimensional space. The molecular dynamic
model of active walkers is described by the behavioral (or general-
ized) force on two-dimensional off-lattice. The lattice-gas model
of biased-random walkers and the CA model are described by
stochastic rules on the square lattice. Helbing et al. have found that
the “freezing by heating” occurs in the facing pedestrian traffic by
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the use of the molecular dynamic model of active walkers [17].
By using the lattice gas model of biased-random walkers, Mura-
matsu et al. have found independently that the freezing transition
occurs from the free traffic to the frozen (stopping) state when the
pedestrian density is higher than the critical value [16]. The freez-
ing transition in the facing pedestrian traffic has been studied by
some researchers [18,19].

In the jamming transition, pedestrian flow in the crowd
changes from the free traffic to the jammed traffic in which pedes-
trians are distributed heterogeneously and move slowly. In the
freezing transition, pedestrian flow change to the frozen state
in which all pedestrians cannot move by preventing from going
ahead each other. The analytical works are unknown for the facing
pedestrian flow. The pedestrian flow has been investigated by the
numerical simulation of the stochastic models on two-dimensional
space. It is not easy to analyze the two-dimensional stochastic
models because the dynamical behavior is complex. However, the
one-dimensional deterministic CA models have not been proposed
for facing traffic of pedestrians until now.

In this Letter, we present the one-dimensional, deterministic,
and bi-directional CA model for the facing pedestrian traffic. We
study the dynamical states and dynamical phase transitions in
the model of facing pedestrian traffic. We show that there exist
four pedestrian states and the jamming and freezing transitions
occur when pedestrian density increases. We show that the bi-
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directional CA model reproduces the Burgers CA model of unidi-
rectional multi-lane traffic in the limit of no facing pedestrians.

2. Bi-directional CA model

We consider the facing (bi-directional) traffic of pedestrians on
a wide passage. There exist two kinds of walkers on the passage:
the one is the walkers moving to the east and the other the walk-
ers moving to the west. The walker moving to the east (or west)
interacts highly with the other walkers in the front. When the den-
sity of walkers ahead is higher, the current decreases more because
the movement of walkers will be prevented by other walkers.

We consider the one-dimensional approximation for two-
dimensional facing pedestrian traffic. We approximate the facing
traffic (counter flow) on two-dimensional lattice as that on one-
dimensional lattice because walkers to east or to west move uni-
directionally on the average. M walkers can exist on a cell (site) at
its maximum. This means that the passage consists of M lanes for
walkers. The width of passage is M .

We define the number that walkers to east (to west) exist on
cell (site) i at time t as NE (i, t) (NW (i, t)). The states of walk-
ers to east are updated in parallel at every odd discrete time step,
whereas those of walkers to west are updated in parallel at ev-
ery even discrete time step. We apply the conservation law of
walker number NE (i, t) (NW (i, t)) to the facing traffic. The num-
ber NE (i,2t + 1) of walkers to east existing on site i at time 2t + 1
is described by the following:

NE(i,2t + 1)

= NE(i,2t − 1)

+ min
[
NE(i − 1,2t − 1), M − NE(i,2t − 1) − NW (i,2t)

]

− min
[
NE(i,2t − 1),

M − NE(i + 1,2t − 1) − NW (i + 1,2t)
]
. (1)

The number NW (i,2t + 2) of walkers to west existing on site i
at time 2t + 2 is described by the following:

NW (i,2t + 2)

= NW (i,2t)

+ min
[
NW (i + 1,2t), M − NE(i,2t + 1) − NW (i,2t)

]

− min
[
NW (i,2t), M − NE(i − 1,2t + 1) − NW (i − 1,2t)

]
,

(2)

where min[A, B] is the minimal function: min[A, B] = A if A < B
and min[A, B] = B if A > B . The second term on the right hand in
Eq. (1) represents the inflow of a walker to east from site i − 1 to
site i between 2t and 2t +1. The third term represents the outflow
of a walker to east from site i to site i + 1 between 2t and 2t + 1.
Similarly, the second and third terms of Eq. (2) represents the in-
flow and outflow of a walker to west on site i between 2t + 1 and
2t + 2.

The excluded-volume effect is taken into account via
min[NE(i − 1, t), M − NE(i, t) − NW (i, t)]. M − NE (i, t) − NW (i, t)
represents the unoccupied space at site i and time t . If NE (i −
1, t) > (M − NE (i, t) − NW (i, t)), (M − NE(i, t) − NW (i, t)) walkers
of NE(i − 1, t) walkers can move to the unoccupied space.

Eqs. (1) and (2) are a couple of nonlinear difference equations.
It is not easy to obtain the analytical solution but possible to ob-
tain the numerical solution.

In the limit of no walkers to west, Eq. (1) reduces to the Burgers
CA model proposed by Nishinari and Takahashi [20]:

NE(i, t + 1) = NE(i, t) + min
[
NE(i − 1, t), M − NE(i, t)

]

− min
[
NE(i, t), M − NE(i + 1, t)

]
. (3)

When M = 1 in Eq. (3), the Burgers CA model (3) reduces to the
rule-184 CA.

3. Simulation and result

We carry out the numerical simulation for bi-directional CA
model described by Eqs. (1) and (2). The boundaries are periodic.
We consider the following initial condition. Walkers to east and to
west distribute uniformly on the passage, respectively. The initial
condition is described by

NE(i,0) = NE,0 and NW (i,0) = NW ,0. (4)

The densities of walkers to east and to west are defined, respec-
tively, as ρE = NE,0/M and ρW = NW ,0/M .

3.1. Current-density diagram

We study the dependence of current J E/M of walkers to east
on initial density NE,0/M of walkers to east under the initial con-
dition of NW ,0 = const.

If passage width M is sufficiently large, the facing traffic shows
a sharp transition and the freezing transition depends little on M .
Because the boundary is periodic, passage length L has little effect
on the traffic when L is large. The width and length of the passage
are set as M = 200 and L = 100.

We add a small perturbation to initial condition (4):
NE (50,0) = NE,0 − 1 and NE(60,0) = NE,0 + 1. Fig. 1(a) shows the
plots of current J E/M against initial density NE,0/M under the
initial condition of NW ,0 = 25. Circles indicate the simulation re-
sult. The current increases linearly with density until point a, then
decrease from point a to pint b, decrease abruptly and discontin-
uously at point b, and become zero at point c. Thus, the slope
of current changes discontinuously at three transition points a, b,
and c. The current becomes zero at transition point c. All walkers
cannot move when the density is higher than ρc (the density at
transition point c). The slopes of segment a −b and segment b′ − c
are −1.

We study the effect of the initial perturbation on the facing
traffic. Fig. 1(b) shows the plots of current J E/M against ini-
tial density NE,0/M for perturbation NE(50,0) = NE,0 − 1 and
NE (70,0) = NE,0 + 1, where passage width M = 200, passage
length L = 100, and NW ,0 = 25. The density of transition point
b is higher than that in Fig. 1(a). Also, the density of transition
point c is higher than that in Fig. 1(a). Transition points b and c
changes with the perturbation. Fig. 1(c) shows the plots of current
J E/M against initial density NE,0/M for no perturbations. The ini-
tial condition in the case of no perturbations is given by Eq. (4).
The current increases linearly with density, reaches its maximum
value at point a, and then decreases from point a with increas-
ing density. The transition points b and c do not appear but the
current-density diagram shows only one transition point a. The
density of transition point a does not change with any perturba-
tions.

When the density is less than that of transition point a, the
current is given by

J E = NE,0 for NE,0/M < ρa, (5)

where ρa is the density at transition point a. When the density is
higher than ρa , the current is given by

J E = M − NE,0 − NW ,0 for NE,0/M > ρa. (6)

At the first transition point, Eq. (5) equals to Eq. (6).
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