Contents lists available at ScienceDirect

Electrochimica Acta

S ELSEVIE

journal homepage: www.elsevier.com/locate/electacta

High performance Li₂MnSiO₄ prepared in molten KCl–NaCl for rechargeable lithium ion batteries

Fei Wang^{a,*}, Yanming Wang^a, Dengming Sun^a, Lei Wang^a, Jun Yang^b, Haiping Jia^c

^a School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, China

^b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^c Meet Battery Research Center, Institute of Physical Chemistry, University of Muenster, Corrensstrasse 46, 48149 Muenster, Germany

ARTICLE INFO

Article history: Received 11 October 2013 Received in revised form 5 December 2013 Accepted 9 December 2013 Available online 24 December 2013

Keywords: Lithium ion battery Molten salt method Lithium manganese silicate Cyclability

ABSTRACT

Li₂MnSiO₄/C composites have been prepared by a facile molten salt method followed by a carbon coating process. Submicron Li₂MnSiO₄ particles are obtained in KCl–NaCl molten phase with a short reaction time of 3 h. The orthorhombic structure and sphere-like morphology are confirmed by X-ray diffraction and scanning electron microscope. Ex-situ XRD study confirms amorphous transition of Li₂MnSiO₄ during the first charge process. Galvanostatic charge-discharge tests display high initial charge and discharge capacities of 265 and 194 mAh g⁻¹, respectively, at 0.05 C rate for the Li₂MnSiO₄/C composite prepared at 700 °C. At 0.1 C rate, it maintains a discharge capacity of 165 mAh g⁻¹ and its capacity retention at the 50th cycle is up to 78%, showing superior cycling stability.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Great attention has been paid to next-generation safe lithium batteries with high energy and power densities for vehicle applications and energy storage. The low practical capacity and safety issue of currently commercialized lithium transition metal oxides cathode materials, such as LiCoO₂, LiMn₂O₄, etc., can not meet the demand of high performance battery systems [1,2]. Lithium orthosilicates, Li_2MSiO_4 (M = Fe, Mn and Co), have recently attracted tremendous interests on account of their high theoretical capacities (>330 mAh g^{-1}) corresponding to a two electron (2 Li⁺) reaction and good thermal stability from strong Si-O bonding [3-6]. Due to the possible oxidation of the Mn³⁺/Mn⁴⁺ couple rather than Fe³⁺/Fe⁴⁺ and Co³⁺/Co⁴⁺ couples within the potential range of present electrolyte systems, the insertion/extraction of two Li⁺ ions is much more feasible in Li₂MnSiO₄ than that in Li₂FeSiO₄ and Li₂CoSiO₄ [7–9]. However, Li₂MnSiO₄ has two main shortcomings, low electronic conductivity ($\sim 10^{-16}$ S cm⁻¹) and slow kinetics, which would result in a poor electrochemical activity [10,11].

Similar to LiFePO₄ material, several approaches including surface carbon coating, metal ion doping and nanoparticles preparation have been pursued to achieve the high capacity of Li₂MnSiO₄ [12–15]. Recently, the nano-sized Li₂MnSiO₄/C composites with the

particle size less than 50 nm were successfully synthesized by solution route [16], solvothermal method [17], sol-gel route [18–20] and microwave-solvothermal process [21,22]. The initial discharge capacities of the composites were beyond 200 mAh g^{-1} , while the capacity dropped dramatically after several cycles and its capacity retention was less than 50% after 20 cycles. The fast capacity fade may be ascribed to the conversion from crystal structure to amorphous phase during the electrochemical cycling [16,19,22]. More recently, Liu et al. [23] reported a solid-state reaction for carbon coated Li₂MnSiO₄ nanoparticles using citric acid as the carbon source. At the rate of 0.05 C, the Li₂MnSiO₄/C composites delivered an initial discharge capacity of 268 mAh g⁻¹ and showed a reversible capacity of 136 mAh g^{-1} up to 140 cycles. Zhao et al. [24] synthesized a carbon coated Li₂MnSiO₄ composite, which was uniformly distributed on reduced graphene oxide (RGO) networks. The RGO@Li2MnSiO4@C composite presented excellent cyclability with a stable capacity of 150 mAh g⁻¹ for 700 cycles at 1 C. The above results indicate that the cycling performance of Li₂MnSiO₄/C is strongly affected by the preparation process and the microstructural perfection of the material. The molten salt method has been widely employed to prepare multi-component oxides powders with controllable particle morphology and excellent electrochemical performance [25,26]. Molten salts as a reaction media could provide a liquid reaction environment for reactants, thereby accelerating the reaction rate and providing a homogeneous structure of the final product [27]. However, to the best of our knowledge, the molten salt synthesis of Li₂MnSiO₄ has rarely been studied so far.

^{*} Corresponding author. Tel.: +86 561 3802235; fax: +86 561 3806281. *E-mail address:* wangfeichem@126.com (F. Wang).

^{0013-4686/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.electacta.2013.12.057

Fig. 1. XRD patterns of $\rm Li_2MnSiO_4$ and $\rm Li_2MnSiO_4/C$ prepared at various temperatures.

In this work, well-dispersed Li_2MnSiO_4 particles have been synthesized by a facile molten salt method using the mixture of KCl and NaCl as the reaction medium. To enhance the surface electronic conductivity, sucrose and acetylene black are adopted as carbon sources to coat the Li_2MnSiO_4 particles with a thin carbon layer. The effects of the material structure and morphology on the electrochemical performances of Li_2MnSiO_4/C are discussed and compared.

2. Experimental

2.1. Sample Synthesis

 Li_2MnSiO_4 particles were prepared by a molten salt method. An equal molar ratio of KCl and NaCl with a melting point of 658 °C acts as flux after drying at 100 °C for 2 h under vacuum. Li_2CO_3 , MnCO₃, SiO₂ (10–20 nm) and KCl–NaCl in a molar ratio of 1:1:1:4 were well mixed with a mortar and pestle. Then, the mixed powders were

transferred to a tube furnace and heated at 350 °C for 2 h, followed by treatment at different temperatures (660, 700 and 750 °C) for 3 h in H₂/Ar (5 vol%) atmosphere. Finally, the product was washed with deionized water to dissolve any remaining salt, filtered and dried in vacuum. The obtained Li₂MnSiO₄ powder was mixed with a certain amount of sucrose and acetylene black, and then calcined at 600 °C in Ar atmosphere for 2 h to obtain Li₂MnSiO₄/C composites.

2.2. Sample analysis

Powder X-ray diffraction (XRD) patterns of the prepared Li_2MnSiO_4 were recorded on a Rigaku D/Max-2200 diffractometer using Cu K α radiation (40 kV, 30 mA). The morphologies of the Li_2MnSiO_4 and Li_2MnSiO_4/C samples were observed by a field emission scanning electron microscope (FESEM, JEOL JSM-7401F) with an accelerating voltage of 5.0 kV and a high resolution transmission electron microscope (HRTEM, JEOL JEM-2100) operating at 200 kV. The carbon content of the Li_2MnSiO_4/C composites was measured with PE 2400IIelemental analyzer.

2.3. Electrochemical Measurements

Electrochemical measurements were performed using CR2016 coin-type cells with Celgard 2400 membrane as separator and metallic lithium foil as anode. The cathode was composed of 85 wt% Li₂MnSiO₄/C, 5 wt% Super P conductive carbon and 10 wt% polyvinylidene difluoride (PVDF). 1 M LiPF₆ in 50:50 (v/v) ethylene carbonate (EC)/dimethyl carbonate (DMC) was used as the electrolyte. Galvanostatic charge/discharge cycling was carried out on a Land battery testing system (CT2001, Wuhan, China) in a potential range of 1.5-5.0V at room temperature. Cyclic voltammetry (CV) was performed on an electrochemical workstation (CHI660D, Shanghai, China). Electrochemical impedance spectroscopic measurement (EIS) was conducted on a Solartron SI1287 electrochemical interface in the frequency rang of 100 kHz to 10 mHz. The specific capacity was calculated based on the mass of pure orthosilicate active material.

Fig. 2. SEM images of Li₂MnSiO₄ and Li₂MnSiO₄/C (inset) prepared at 660 °C (a), 700 °C (b) and 750 °C (c); TEM image of the Li₂MnSiO₄/C composite (d).

Download English Version:

https://daneshyari.com/en/article/186407

Download Persian Version:

https://daneshyari.com/article/186407

Daneshyari.com