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Using the finite difference method to discretize Helmholtz equations usually leads to a large spare linear
system of equations Ax = b. Since the coefficient matrix A is frequently indefinite, it is difficult to solve
iteratively. The approach taken in this Letter is to precondition this linear system with positive stable
preconditioners and then to solve it iteratively using Krylov subspace methods. Numerical experiments
are given in order to demonstrate the efficiency of the presented preconditioners.
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1. Introduction

In computational electromagnetics and seismology, the finite
difference method is one of the most effective and popular tech-
niques. The finite difference method has many important appli-
cations such as time-harmonic wave propagations, scattering phe-
nomena arising in acoustic and optical problems. More information
about applications of this method in electromagnetics can be found
in [1–3].

In this Letter, we are mainly interested in the following form of
the Helmholtz equation:

{−�u − pu = f in Ω,

u = g on ∂Ω,
(1.1)

where � = ∂2/∂x2 + ∂2/∂ y2 is the Laplace operator. Ω is a
bounded region in R

2. p � 0 is a real continuous coefficient func-
tion on Ω̄ , while f and g are given continuous functions on Ω̄

and ∂Ω , respectively.
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To conveniently find numerical solutions of (1.1), the equa-
tion is discretized with the second-order difference scheme, in
x-direction:

∂2u

∂x2
= 1

h2
(ui−1 − 2ui + ui+1) + O

(
h2),

and similarly in y-direction with a constant mesh spacing h in
both directions. This approach yields the following linear system:

Ax = (
A − h2 D

)
x = b, (1.2)

where A is the symmetric positive definite M-matrix arising from
the discretization of the Laplace operator, and D is a diagonal ma-
trix whose diagonal elements are just the values of p at the mesh
points. It is not difficult to find that A is of the block tridiagonal
form

A =

⎡
⎢⎢⎢⎣

G1 F2

E2 G2
. . .

. . .
. . . Fm

Em Gm

⎤
⎥⎥⎥⎦ ,

with
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Gk =

⎡
⎢⎢⎢⎣

4 −1

−1 4
. . .

. . .
. . . −1
−1 4

⎤
⎥⎥⎥⎦

nk×nk

, k = 1,2, . . . ,m,

Ek = F T
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(O nk×pk − Ink O nk×qk ),

pk,qk � 0, pk + qk = nk−1 − nk

if nk � nk−1,

(O nk−1×sk − Ink−1 O nk−1×tk )
T ,

sk, tk � 0, sk + tk = nk − nk−1

if nk > nk−1,

k = 2,3, . . . ,m.

Obviously, as p is a sufficiently large positive number, the ma-
trix A becomes highly indefinite and ill-conditioned.

As is known, the linear system (1.2) can be solved by direct
methods or iterative methods. Direct methods are widely em-
ployed when the order of the coefficient matrix A is not too large,
and are usually regarded as robust methods. The memory and the
computational requirements for solving the large linear systems
may seriously challenge the most efficient direct solution method
available today.

The alternative is to use iterative methods established for solv-
ing the large sparse linear systems. Naturally, it is necessary that
we make the use of iterative methods instead of direct methods to
solve the large sparse linear systems. Meanwhile, iterative methods
are easier to implement efficiently on high performance comput-
ers than direct methods. Currently, Krylov subspace methods are
considered as one kind of the important and efficient iterative
techniques for solving the large sparse linear systems. However, in
fact, Krylov subspace methods are not competitive without a good
preconditioner. In this Letter, positive stable preconditioners are
presented to improve the convergence of Krylov subspace methods
for solving Helmholtz equations.

There are the various authors contributed to the development
of the powerful preconditioners for Helmholtz equations. In [3],
Bayliss et al. equivalently transformed (1.2) into the normal equa-
tions A H Ax = A H b and employed a preconditioned CG method to
solve these normal equations. The preconditioning technique was
based on an SSOR sweep for the discrete Laplace operator. Sim-
ilar to the approach of [3], the preconditioner considered in [4]
by Gozani et al. was constructed based on the Laplace operator,
too. To make the above preconditioner better, in [5] Laird took
the Laplace operator perturbed by a real-valued linear term as a
preconditioner, which resulted in very satisfactory convergence. In
[2], Erlangga et al. showed that making use of a complex-valued
linear term to perturb the Laplace operator can lead to a bet-
ter preconditioner than by using a real-valued perturbation. This
kind of preconditioners is called “shifted Laplace” preconditioners,
which is simple to construct and is easy to extend to inhomoge-
neous medias.

Based on the work of [2,5] and the preconditioning idea, this
Letter is devoted to giving the positive stable preconditioners for
the symmetric indefinite linear system (1.2).

The remainder of this Letter is organized as follows. In Sec-
tion 2, iterative methods with the positive stable preconditioners
for solving the resulting linear system will be discussed. In Sec-
tion 3, the preconditioners will be extended to general mathe-
matical model problems. In Section 4, numerical experiments are
presented to confirm the efficiency of the presented precondition-
ers. Finally, in Section 5 some conclusions are drawn.

2. Preconditioned iterative methods

To improve the rate of convergence for iterative methods, in
general, a preconditioner should be incorporated. That is, it is often
preferable to solve the preconditioned linear system as follows:

P−1 Ax = P−1b, (2.1)

where P , called the preconditioner, is a non-singular matrix. The
choice of the preconditioner P is important in actual implements.
Generally speaking, the preconditioner P is chosen such that the
condition number of the preconditioned matrix P−1 A is less than
that of the original matrix A. According to the survey of [6] by
Benzi, a good preconditioner should meet the following require-
ments:

• The preconditioned system should be easy to solve.
• The preconditioner should be cheap to construct and apply.

Of course, the best choice for P−1 is the inverse of A. However,
it is useless in actual implements. If A is a symmetric positive
definite matrix, the approximation of A−1 is taken place of SSOR
or multi-grid. However, in fact, the Helmholtz equation results in
an indefinite linear system, for which SSOR or multi-grid may be
not guaranteed to converge.

To improve the convergence rate of iterative methods for
solving the symmetric indefinite linear system arising from the
Helmholtz equation, it is an easy approach that we may look for
a form of P−1 such that P−1 A has satisfactory properties for
Krylov subspace acceleration, not seek an approximate inverse of
the indefinite matrix A. In this way, a first effort to construct a
preconditioner was presented in [3]. That is, the preconditioner is

P1 = �,

which is in connection with CGNR [7] to solve the symmetric in-
definite linear system. One SSOR or multi-grid iteration is used
whenever operations involving P−1

1 are required. The subsequent
work on this class of the preconditioners with multi-grid was dis-
cussed in [4,13,14]. To make the above preconditioner better, in
[5] Laird took the Laplace operator perturbed by a real-valued lin-
ear term as a preconditioner and improved the convergence rate
of iterative methods. In [2], it was shown that making use of a
complex-valued linear term to perturb the Laplace operator can
lead to a better preconditioner than by using a real-valued pertur-
bation.

As is known, Krylov subspace methods such as GMRES can be
used to solve the preconditioned linear systems efficiently, too. In
the case of small h, the storage problem of full GMRES can be over-
come by applying GMRES(m). BiCGSTAB does not always perform
satisfactorily in [5]. See [5] for more details.

To improve the preconditioner P1 for the Helmholtz equation,
here the new preconditioner is considered in terms of the idea of
the preconditioner developed:

P2 = A + h2(α − p)I (α > p). (2.2)

Clearly, P2 is a symmetric positive definite matrix. As before,
the coefficient matrix in (1.2) is symmetric indefinite if p is a suf-
ficiently large positive number. So, it is easy to know that MINRES
or SYMMLQ with the preconditioner P2 can be employed to solve
the symmetric indefinite linear system (1.2), which was proposed
in [8]. One can see [8] for details.

In our numerical experiments, we find that the MINRES method
outperforms the SYMMLQ method, which are employed to solve
the symmetric indefinite linear system (see our numerical experi-
ments for details).
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