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The entanglement between a single electron in the electronic states of a trapped three-level ion and the
ionic vibrational modes of the trap is studied for an initially unentangled state of an electron level and a
coherent phonon state. The effects of time-independent and time-dependent couplings are discussed.
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1. Introduction

Recent advances in the dynamics of trapped ions indicate that a
macroscopic observer can effectively control the dynamics as well
as perform a complete measurement of the states of microscopic
quantum systems [1–7]. One aspect of advances in control and
measurement is the ability to make tests of various phenomena
arising in quantum mechanics but otherwise absent in classical
mechanics [3,8,9]. Some examples of such non-classical effects,
based on the ability of quantum states to entangle their degrees of
freedom, are found in the Einstein, Podolsky, Rosen paradox [10],
discussions related to Bell’s Theorem [11], and quantum telepor-
tation [12]. Equally important aspects of the non-classical effects
in quantum mechanics occur in potential technological applica-
tions of entanglement [6–9,13]. These include the use of entangled
states in the design of quantum information and quantum comput-
ing systems [7–9,13], quantum teleportation and encryption [8,9,
12,14], various processes that can regulate the propagation of light
through optical media or the positioning of atoms in space [9],
and aspects of entanglement-induced transparency [15]. As a con-
sequence of these possible applications, entanglement has been
studied in a wide variety of systems in attempts to find those
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that can sustain entanglement and efficiently utilize its properties
[16–23].

A particular recent interest is the dynamics of trapped ions and
the entanglement of the electronic and vibrational modes of the
ion within the trap [3,6,7,13]. The interaction of the electronic and
vibrational modes of a cooled trapped ion is mediated by an elec-
tric dipole coupling of the electronic levels of the ion to a classical
electromagnetic field through an intensity gradient. Such systems
find their roots in earlier studies of the spatial manipulation of
atoms with laser beams [24], the laser cooling of atoms [25], and
the study of Bose–Einstein condensates [26]. A technological fo-
cus of current work on these systems centers on the suggestion
for their effective application as a means of developing entangled
states that are suitable in the design of quantum computers. Much
of these considerations both theoretically and experimentally have
concentrated on the interaction of two-level ions with vibrational
trap modes [6–9]. From a theoretical standpoint studies of these
systems have included treatments of the ion interacting with Fock,
coherent, and pair cat phonon states [6–8,27]. This has paralleled
experimental work which has been involved in the preparation and
measurement of the motional state of a trapped ion initially laser
cooled to its zero-point of motion [6,7,28] and treatments of the
interaction of two-level systems with Fock states, coherent states,
squeezed states, and considerations of various side-band phonon
transitions [19]. Of particular interest to us are recent experiments
on two-level ions coupled to their trap vibrational modes [29]
as these suggest that experiments can also be made on trapped
three-level ions which are the topic of theoretical discussions here.
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Indeed, the two-level experiments display many of the feature dis-
cussed in this Letter for three-level systems. An important aspect
of much of this work is on the effective development of entangled
systems having potential applications.

In this communication we extend considerations of the entan-
glement of two-level trapped ions with their phonon modes to
treat a simple three-level trapped ion initial interacting with a
coherent phonon state of its motion. In these considerations we
will treat a system which represents the next level of complexity
from that of the two-level system for a trapped ion and will deter-
mine the effects of this complexity on the system properties. The
focus is on determining the entanglement properties of the sys-
tem. Of interest are such properties as the rate at which a state
of near maximum entanglement is achieved starting from initial
conditions of a pure unentangled state, whether or not the system
approaches a final state of near maximum entanglement asymptot-
ically in time, whether or not a maximum entanglement is reached
in a uniform manner, and how do time-dependent changes in the
coupling of the ion and phonon fields affect the entanglement ob-
served in the system.

It is important to point out that further insights into the dy-
namics of the multi-level systems may be helpful in developing
quantum information theory [30–32]. It was demonstrated that key
distributions based on three-level quantum systems are more se-
cure against eavesdropping than those based on two-level systems
[33]. The security of these protocols is related to the violation
of the Bell inequality and a much smaller of noise can be toler-
ated using a three-level system [32]. Also, the use of qutrits rather
than qubits can theoretically increase the speed of calculations. It
appears therefore very tempting to investigate and compare the
dynamics of the three-level system with those of two-level ones.

The presentation is organized as follows. In Section 2, the
model of the three-level ion interacting with the field is presented.
In Section 3, a discussion of the method of solution of the system
dynamics and of the definition and evaluation of the von Neumann
entropy is presented. In Section 4, the numerical results of entan-
glement and the generation and decay and revivals of entangle-
ment are presented for the three-level system. Finally, a summary
of the results and conclusions are given in Section 5 along with
some generalization to higher multi-level systems with degenera-
cies.

2. System and model

The system to be studied is shown in Fig. 1. It consists of a
trapped ion with a single electron restricted to occupy three elec-
tronic levels of the ion. The electron interacts with the phonons of
the harmonic motion of the ion within the trap through the me-
diation of a classical electromagnetic field applied to the system
[3–7]. The potential energy of the ionic motion in the trap is taken
to be asymmetric such that the lowest frequency modes are for
motion along the x-direction, and the system is cold so that the
vibrations along the x-direction dominate the motion of the ion.
The Hamiltonian of the ionic external and internal degrees of free-
dom is then given by

Ĥ0 = h̄υψ̂†ψ̂ + h̄
∑

i=a,b,c

ωi Ŝ ii, (1)

where Ŝ i j = |i〉〈 j| (i, j = a,b, c) are defined over the three elec-
tronic energy levels and ωb − ωa = ωa − ωc where ωb > ωa > ωc .
Here ψ̂ and ψ̂† are the annihilation and creation operators of the
harmonic modes of the ionic motion in the trap and υ is the
frequency for motion along the x-direction. The higher frequency
quantized vibrations in the y- and z-directions are ignored.

Fig. 1. Configuration of a single three-level ion. The states |a〉, |b〉 and |c〉 are coupled
via a classical laser field of frequency Ω and a phonon of frequency υ so that the
resonant transitions between the level are Ω + υ .

The interaction between the three-level ion and its harmonic
motion is mediated by the electric dipole coupling of a classical
electromagnetic field to the electronic states of the ion. The inter-
action of the three-level ion and the electric field is written as

Ĥ int(t) = −�(x̂, t) · d̂, (2)

where d̂ ∝ Ŝab + Ŝac + Ŝba + Ŝca is the atomic electric dipole op-
erator, and the classical electromagnetic field at the ion position is
given by

�(x̂, t) = �exp
[−i(k̂|| · x̂ − Ωt)

] + h.c. (3)

Here � = �0 exp(iφ(t)), where �0 is the positive real constant elec-
tric field amplitude and φ(t) is a complex phase that can be used
to model general time-dependent or stochastic couplings between
the fields and dipole [34–37], k̂|| is the wave vector which is di-
rected along the x-axis, x̂ is the position of the ion center of mass
operator, and Ω is the frequency of the laser field. Introducing
the position operator x̂ = [h̄/2υM]1/2(ψ + ψ†) into the factor of
exp[ik̂|| · x̂] in Eq. (3) gives exp[ik̂|| · x̂] ∝ exp[iη(ψ† + ψ)] where
η = k||(h̄/2υM)1/2 with 0 < η � 1 is the Lamb–Dicke parameter
and M is the atomic mass [3]. (Here we assume that 0 < η � 1
which is not unreasonable in realized systems [19,29].) Upon ap-
plying the Baker–Hausdorff theorem [38]

exp
{

iη
(
ψ† + ψ

)} = exp

(−η2

2

) ∞∑
n=0

(iη)nψ†n

n!
∞∑

m=0

(iη)mψm

m! , (4)

and we see that the coupling to the electronic levels in powers
of the Lamb–Dicke parameter can be divided into three categories:
(i) the terms for n > m correspond to an increase in energy linked
with the motional state of center of mass of the ion by (n − m)
quanta, (ii) the terms with n < m represent destruction of (m − n)
quanta of energy linked with the center of mass motion, and (iii)
(n = m) represents the diagonal contributions.

Using Eqs. (3) and (4) in Eq. (2), taking the Lamb–Dicke limit
(i.e., 0 < η � 1), and applying the rotating wave approximations
[19], gives an interaction Hamiltonian of the form (h̄ = 1)

Ĥ int = λab(t)ψ
† E ∗

1

(
ψ†ψ

)
Ŝab + λca(t)ψ

† E ∗
1

(
ψ†ψ

)
Ŝca + H.c., (5)

where E1(ψ
†ψ) is given by

E1
(
ψ†ψ

) = exp

(
−η2

2

) ∞∑
n=0

(iη)2n+1

n!(n + 1)!ψ
†nψn. (6)
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