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Dynamical instability of a boson–fermion mixture at low dimensions

Z. Akdeniz a, P. Vignolo b,∗
a Piri Reis University, 34940 Tuzla-Istanbul, Turkey
b Institut Non Linéaire de Nice, Université de Nice-Sophia Antipolis, CNRS, 1361 route des Lucioles, 06560 Valbonne, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 April 2009
Accepted 1 May 2009
Available online 7 May 2009
Communicated by V.M. Agranovich

PACS:
03.75.-b
05.30.-d
73.43.Nq

Keywords:
Bose–Fermi gases
Quantum phase separation
Equilibrium properties

We examine theoretically the dynamical response of a homogeneous mixture of condensed bosons and
spin-polarized fermions confined inside a quasi-two-dimensional or a quasi-one-dimensional geometry,
considering quasi-three-dimensional boson–boson and boson–fermion interactions. We focus on the
effects of low dimensions on the density response functions in the crossover from weak to strong boson–
fermion coupling up to the onset of instability. The dynamical condition is found to be in agreement with
a linear stability analysis at equilibrium.
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1. Introduction

Fermionic atomic gases were brought together with bosonic
atoms to quantum degeneracy in a 7Li–6Li mixture [1,2], 23Na–
6Li mixture [3], and 87Rb–40K mixture [4–6]. The boson–fermion
(BF) coupling strongly affects the equilibrium properties of the
mixture and can drive quantum phase transitions, as predicted in
several theoretical studies (for a review see [7]) and as recently
observed in the context of three-dimensional (3D) atomic fermion–
molecular boson mixtures [8,9], where the strong interspecies in-
teraction leads to phase separation. Such mixtures can be realized
from an imbalanced two-component Fermi gas (40K–40K or 6Li–6Li
mixtures) where all minority fermions become bound as bosons
and form a Bose–Einstein condensate (BEC). The Feshbach reso-
nance exploited to drive the fermion–fermion interactions towards
the formation of molecules determines the effective dimer–dimer
and dimer–fermion scattering lengths, with a resulting strongly BF
repulsion.

Though an imbalanced Fermi gas is a practical system with
which to create a strongly repulsive BF mixture, the advantage of
using two atomic species is that boson–boson and BF interactions
can be driven independently and that one can access attractive BF
interactions [10,11].
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The stability condition for spatial demixing (or collapse) for
a BF mixture depends on the Fermi energy [12] and thus on
the geometry of the system [13]. On approaching a quasi-two-
dimensional geometry (Q2D), in a pancake-shaped trap, the Fermi
energy increases linearly with the number of fermions, so that
the stability condition of the mixture becomes independent of the
fermion density and involves only the scattering length and the
transverse width of the cloud [14]. In a cigar-shaped trap, in the
quasi-one-dimensional (Q1D) limit, the Fermi energy is propor-
tional to the square of the number of fermions per unit length,
with the consequence that the mixture becomes unstable at low
linear fermion densities [15,16].

The dynamical properties of BF mixtures have been previously
investigated theorically, mainly in the mixed phase, both for ho-
mogeneous systems [17–19] and in harmonically confined clouds.
In the latter case these studies have exploited a sum-rule ap-
proach [20,21], perturbation theory [22], or a random-phase ap-
proximation (RPA) [23–25]. The spectrum behaviour approaching
the instability have been studied in 3D [26,27] and in 1D [15], the
dynamical signature of the approaching transition being a collec-
tive mode softening.

In this Letter we investigate the effect of the geometry on the
spectrum of collective excitations of a zero-temperature BF mixture
as the mixture approaches an instability. We adopt a RPA scheme
and we examine a Q2D and a Q1D geometry in the limit where
the effect of the lack confinement can be neglected. In analogy
to what has already been shown, in both 3D [27] and in 1D [15],
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for a pancake-shaped and for a cigar-shaped geometry, the arising
instability is indicated by the softening of a hybridized mode. This
dynamical condition is found to be in agreement with the linear
stability analysis at equilibrium.

The Letter is organized as follows: in Section 2 we introduce
the model and review the conditions for demixing and collapse,
as obtained from static considerations. In Section 3 we introduce
the RPA formalism and discuss the dynamical response in Q2D and
in Q1D. Finally, Section 4 contains a summary and our main con-
clusions.

2. The model

We consider a homogeneous mixture of Nb hard-core bosons of
mass mb and N f spin-polarized fermions of mass m f at T = 0 K.
We focus on two trap geometries: a disk geometry and a cylindric
configuration with a tight confinement of frequency ω0 in the az-
imuthal direction or in the radial plane respectively. If the trapping
potential h̄ω0 exceeds the ground state energy of the bosons and
of the fermions, we have an effective low dimensional (LD) system.
The collisions in such a LD system can be considered (i) strictly LD
if the thickness l ∼ (h̄/mb, f ω0)

1/2 of the disk (or of the cylinder) is
smaller than the modulus of the boson–boson and boson–fermion
scattering lengths abb and abf ; (ii) quasi-LD if l ∼ abb, |abf |; and
(iii) quasi-3D if l � abb, |abf |. In this Letter we will focus on a mix-
ture in reduced dimensionality with quasi-3D boson–boson and
boson–fermion interactions. In this regime, the effective LD cou-
pling strengths can be obtained by integrating over the frozen
coordinates and read

gbb = 4π h̄2abb

mb(
√

2π l)L
, gbf = 2π h̄2abf

mr(
√

2π l)L
(1)

with mr = mbm f /(mb + m f ) being the reduced mass.
The equilibrium properties of the mixture can be studied by

using a Thomas–Fermi approximation for the condensed bosons
and for the spin-polarized fermions. The Thomas–Fermi approx-
imation for the bosons assumes that the number of condensed
(quasi-condensed) bosons is large enough that the kinetic en-
ergy term in the Gross–Pitaevskii equation may be neglected. It
yields

gbbnb + gbf n f = μb, (2)

where nb and n f are the boson and fermion densities and μb the
boson chemical potential. The Thomas–Fermi approximation for
the spin-polarized fermions reads

1

2m f

(
n f

AL

)L/2

+ gbf nb = μ f , (3)

where A1 = 1/(π h̄), A2 = 1/(4π h̄2) and μ f the chemical potential
for the fermions.

As the boson–fermion coupling increases, the mixture can be-
come unstable against demixing (in the case gbf > 0) or against
collapse (in the case gbf < 0). In a macroscopic system at given
particle densities the linear stability analysis, det(∂μi/∂n j) � 0,
based on a mean-field energy functional predicts that the locations
for demixing and collapse coincide and that the mixed gaseous
cloud is stable if the condition

gbb g f f − (gbf )
2 � 0, (4)

is fulfilled, with g f f playing the role of an effective fermion–
fermion repulsion due to the Pauli pressure in the Fermi gas in
LD. In 3D g f f = π h̄2(4π/3n f )

1/3 and the mixed state is stable at
given boson–fermion attractive or repulsive coupling if the fermion
density is below a threshold [12]. In 2D g f f = 2π h̄2 and the mixed

state is either stable or unstable regardless of the fermion areal den-
sity [14]. In 1D g f f = π2h̄2n f /m f increases with n f and the mixed
state is stable when the linear density of fermions is above a
threshold [15,16].

The stability condition given in Eq. (4) can be re-written

|abf | �
∣∣ac

bf

∣∣ = abb

(
2πm2

r

mbm f

√
2

π

l

abb

)1/2

(5)

in the disk geometry, and

|abf | �
∣∣ac

bf

∣∣ = abb

(
2πm2

r

mbm f

k1D
f l2

abb

)1/2

, (6)

in the cylinder geometry, with k1D
f = πn f being the 1D Fermi wave

number.
Eqs. (6) and (5) well depict the stability condition in the

pancake-shaped [14] and in the cigar-shaped cloud [16] too, pro-
vided that the densities vary smoothly. In the cigar geometry, k1D

f
must be considered as the 1D Fermi wave number at the center of
the cloud.

3. Dynamic response

We now consider the dynamical properties of the mixture. In
the dilute limit, we can use a RPA approach which neglects corre-
lations between density fluctuations, but satisfies the f -sum rules.
The RPA yields the spectrum of collective excitations in the linear
regime from a set of coupled equations for the density fluctua-
tions δn f and δnb , which are obtained by assuming that the fluid
responds as an ideal gas to external perturbing fields δU f and δUb
plus fluctuations of the interaction energy (Hartree–Fock). The RPA
equations in Fourier transform with respect to the time variable
read

δn f (r,ω) =
∫

d3r′ χ0
f f (r, r′,ω)

[
δU f (r′,ω) + gbf δnb(r′,ω)

]
(7)

and

δnb(r,ω) =
∫

d3r′ χBog(r, r′,ω)
[
δUb(r′,ω) + gbf δn f (r′,ω)

]
, (8)

where χ0
f f is the Lindhard density–density response function

χ0
f f (k,ω) =

∑
p

f (εp) − f (εp+k)

ω − (εp+k − εp) + iη
(9)

with εk = h̄k2/2m f and f (ε) = θ(μ f − ε). In the Bogolubov ap-
proximation for bosons the response function takes into account
the boson–boson interactions, and has an algebraic form that does
not depend on the dimensionality:

χBog = nbk2/mb

ω(ω + iη) − cbk2 − (h̄k2/2mb)
2
, (10)

with cb = (gbbnb/mb)
1/2 the Bogolubov sound velocity. The system

of Eqs. (7) and (8) can be rearranged as(
δn f

δnb

)
=

(
χ f f χ f b

χbf χbb

)(
δU f

δUb

)
(11)

with χ f f = χ0
f f /(1 − g2

bf χ
Bogχ0

f f ), χbb = χBog/(1 − g2
bf χ

Bogχ0
f f )

and χ f b = χbf = gbf χ
Bogχ0

f f /(1 − g2
bf χ

Bogχ0
f f ).

The density response functions of the mixture were first intro-
duced in 3D by Yip [17], who evaluated numerically the spectra
in the case of weak boson–fermion coupling, and have been used
in the strong coupling regime to study the stability condition in
3D [26] and in 1D [15]. The aim of this Letter is to focus on the
effects of low dimensions on the density response functions in the
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