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We investigated the super quantum discord based on weak measurements. The super quantum discord
is an extension of the standard quantum discord defined by projective measurements and also describes
the quantumness of correlations. We provide some equivalent conditions for zero super quantum discord
by using quantum discord, classical correlation and mutual information. In particular, we find that the
super quantum discord is zero only for product states, which have zero mutual information. This result
suggests that non-zero correlations can always be detected using the quantum correlation with weak
measurements. As an example, we present the assisted state-discrimination method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum measurement plays a key role in quantum mechan-
ics and has certain interesting quantum properties that are rarely
seen in everyday life. These properties include the collapse of
the wave function, the concept of compatible observables and the
contextuality phenomenon. To perform a quantum measurement,
one must construct a set of orthogonal projection operators cor-
responding to the observable eigenvector spaces of a Hermitian
operator. The possible outcomes of the measurement correspond
to the eigenvalues of the Hermitian operator. This type of measure-
ment is the standard von Neumann measurement, or projective
measurement [1]. Recently, the formalism was generalized to the
positive-operator-valued measure (POVM) [2], which can capture
many phenomena beyond what can be probed by projective mea-
surements.

However, the measurement of a quantum state inevitably dis-
turbs the quantum system, which, in turn, determines what knowl-
edge can be retrieved regarding the measured system. To exert the
least influence on the original quantum state, a measurement can
be introduced that induces a partial collapse of the quantum state.
This is the so-called weak measurement [3–5]. Quantum states
can be retrieved with a non-zero success probability when the in-
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teraction between the system and the measurement apparatus is
weak [6]. It has been shown that any generic measurement can
be decomposed into a sequence of weak measurements [7]. There-
fore, weak measurements are universal. Furthermore, the reverse
process has drawn considerable attention both theoretically and
experimentally [8,9] because of its potential applications in quan-
tum information processing [10]. In addition, weak measurements
can amplify extremely tiny signals [11,12].

Searching for quantum correlation in a composite system and
identifying its role in quantum information processing is one of
the fundamental problems in quantum mechanics. Quantum en-
tanglement is widely regarded as having a crucial role in quantum
teleportation and superdense coding [2]. Quantum discord [13–15],
which is more stringent than quantum entanglement, can effec-
tively elucidate the role of the quantumness of correlations and is
different from the classical correlation. Quantum discord has been
proven to be present in deterministic quantum computation with
one qubit (DQC1) [16] and can be used as a resource in remote
state preparation [17]. Furthermore, the consumed discord bounds
the quantum advantage in encoded information [18]. Quantum dis-
sonance (or one-side discord) has been proven to be required for
optimal assisted discrimination [19–21]. It is known that quantum
entanglement can be described and detected using various meth-
ods [22–24]. However, quantum discord can exist when entangle-
ment is absent. The quantum discord vanishes for the so-called
classical–classical (CC) state, the classical–quantum (CQ) state and
the quantum–classical (QC) state [25–27].
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However, studies indicate that the quantum advantage may ex-
ist even for vanishing discord [28]. It should, then, be possible to
construct a measure of quantum correlation that always exists, ex-
cept for product states. A good candidate for this measure is the
super quantum discord, which is an extension of the quantum
discord based on weak measurements [29]. The super quantum
discord is always larger than the normal discord induced by strong
(projective) measurements, which suggests that the super quan-
tum discord can capture significantly more correlation information.
Furthermore, super discord can result in the improvement of the
entropic uncertainty relations [30,31]. Thus, we can ask: what is
the criterion by which the super quantum discord exists in a quan-
tum system? Can super discord exist in a quantum information
model in which quantum discord and entanglement do not exist?
In this article, we provide a necessary and sufficient condition for
the vanishing of the super discord in terms of classical correlation,
mutual information and normal discord. Our results indicate that
the quantum correlation measured by the super quantum discord
always exists, except when there is no correlation. Thus, we can
confirm the expectation that all correlations can be detected from
the perspective of quantum correlation. We further illustrate that
super discord can occur in optimal assisted state discrimination on
both sides, whereby only one-side quantum discord is present and
entanglement is unnecessary.

This article is organized as follows. In Section 2, we review the
definition and several properties of super discord. In Section 3, we
provide a series of necessary and sufficient conditions for the van-
ishing of the super discord. An illustration of the super discord
present on both sides in optimal assisted state discrimination is
given in Section 4. Finally, we present our summary in Section 5.

2. The concept and properties of super discord

Consider the bipartite state ρ on the space HA ⊗HB . Let {πk}
be one-dimensional von Neumann projectors, and the probabil-
ity is given by pk = Tr(I ⊗ πk)ρ(I ⊗ πk). The completeness of
the operators {πk} implies the formula

∑
k pk = 1. Next, S(ρ) :=

−Trρ logρ is the von Neumann entropy, whereby “log” denotes
“log2” throughout the article. We refer to ρA , ρB as the reduced
density operators of ρ . Then, we denote the mutual quantum in-
formation by I(ρ) := S(ρA) + S(ρB) − S(ρ) and the classical cor-
relation by C(ρ) := maxπk I(

∑
k(I ⊗ πk)ρ(I ⊗ πk)) [13,14,32]. Both

these terms are non-negative because the mutual information is
non-negative [2].

The quantum discord for ρ is defined as the difference between
the mutual information and the classical correlation as follows
[14,25]:

D(ρ) = I(ρ) − C(ρ)

= S(ρB) − S(ρ) + min
πk

∑
k

pk S

(
(I ⊗ πk)ρ(I ⊗ πk)

pk

)
. (1)

It is known that [26,27] the (“right”) discord is zero if and only if
ρ = ∑

i piρi ⊗ |ϕi〉〈ϕi |, where the |ϕi〉 are o.n. basis. This criterion
defines the so-called classical state of the system B .

Next, we recall the super quantum discord D w(ρ) for the two-
qubit states ρ introduced in [29], which is defined as follows:

D w(ρ) := min{π0,π1} S w
(

A
∣∣ {

P B(x)
}) − S(A|B), (2)

where the conditional entropy S(A|B) = S(ρ) − S(ρB);

S w
(

A
∣∣ {

P B(x)
}) = p(x)S(ρA|P B (x)) + p(−x)S(ρA|P B (−x)), (3)

p(±x) = Tr
((

I ⊗ P B(±x)
)
ρ
(

I ⊗ P B(±x)
))

, (4)

ρA|P B (±x) = 1

p(±x)
TrB

((
I ⊗ P B(±x)

)
ρ
(

I ⊗ P B(±x)
))

, (5)

P (x) =
√

1 − tanh x

2
π0 +

√
1 + tanh x

2
π1, (6)

P (−x) =
√

1 + tanh x

2
π0 +

√
1 − tanh x

2
π1, (7)

and x ∈ R \ {0} is a parameter that describes the strength of the
measurement process. Using Eq. (2), we can write D w(U ⊗ V ρU † ⊗
V †) � D w(ρ) with arbitrary unitary U , V . One can similarly obtain
D w(U ⊗ V ρU † ⊗ V †) � D w(ρ); thus, we can write

D w
(
U ⊗ V ρU † ⊗ V †) = D w(ρ). (8)

In other words, the super discord is invariant up to the local uni-
tary. This property is the same as that of the normal discord.

Using Eqs. (6) and (7), we can obtain the completeness relation
as follows:

π0 + π1 = f P (x)† P (x) + P (−x)† P (−x) = I. (9)

Using Eqs. (4) and (9), we observe that the probability sum is equal
to one as follows:

p(x) + p(−x) = 1. (10)

Using the concavity of the von Neumann entropy and Eqs. (3)
and (5), we can easily obtain I(ρ) � D w(ρ). By incorporating the
theorem of [29], we can obtain

I(ρ) � D w(ρ) � D(ρ) (11)

for any two-qubit states. However, these three quantities are not
quantitatively related to the classical correlation. It follows from
Ref. [33] that the difference C(ρ) − D(ρ) can be either positive or
negative for the two-qubit Bell diagonal states ρ in [33]; see [34].
Nevertheless, we derive the relations among the classical corre-
lation, mutual information, super discord and discord for product
states in the next section.

3. Condition for zero super discord

Similar to the case of discord, we can ask the following ques-
tion: what are the states ρ whose super discord is zero? According
to Eq. (11) and [26,27], such states ρ must be classical in the
system B . However, the converse is not manifestly true; see The-
orem 1 below. Thus, we require a preliminary lemma. It is known
that the classical correlation is zero for a product state [13]. We
can show that the inverse is also true.

Lemma 1. Any bipartite state ρ that satisfies C(ρ) = 0 is a product state,
i.e., ρ = ρA ⊗ ρB .

Proof. By definition, the condition C(ρ) = 0 implies that I(
∑

k(I ⊗
πk)ρ(I ⊗ πk)) = 0 holds for any {πk}. By the subadditivity of the
von Neumann entropy, the state

∑
k(I ⊗ πk)ρ(I ⊗ πk) is a product

state. By tracing out the system A or B , we obtain∑
k

(I ⊗ πk)ρ(I ⊗ πk) = ρA ⊗
∑

k

πkρBπk (12)

for any {πk}. Let ρB = ∑
i pi |bi〉〈bi | be the spectral decomposition,

and we can assume ρ = ∑
i j ρi j ⊗|bi〉〈b j |. By choosing πi = |bi〉〈bi |

in Eq. (12), we obtain ρii = piρA , ∀i. Using the normalization con-
dition

∑
i pi = 1, we obtain ρ = ρA ⊗ ρB + ∑

i �= j ρi j ⊗ |bi〉〈b j |.
By substituting this expression for ρ into Eq. (12), we obtain∑

k

(I ⊗ πk)

(∑
i �= j

ρi j ⊗ |bi〉〈b j|
)

(I ⊗ πk) = 0 (13)
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