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The theory of electronic Raman scattering in cuprate superconductors based on the t– J model is evolved
to describe the magnetic field dependent electronic Raman response. The magnetic field dependence of
Raman response in the overdoped regime is studied at different doping cases. The results show that the
peak and intensity in the B1g and B2g symmetry give depletion as the magnetic field increased. We
indicate the decrease of the superconducting order parameter Δ under the magnetic field. The overall
density of Cooper pairs is also investigated and yields suppression with the increase of the magnetic
fields.
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Since the discovery of cuprate superconductors by Bednorz and
Müller [1], intensive experiments have been given to the studies
of the various properties of high temperature superconductivity.
Although it is still not clear but a common view is the existence of
the electron Cooper pairs plays a crucial role in the high temper-
ature superconductivity. Among these experiment tools, electronic
Raman scattering arises from quasi-particle excitations around the
Fermi surface and provides spectroscopic information about the
quasiparticle excitation spectra [2]. In the superconducting state,
the peak which arises from the low frequency tail of the Ra-
man continua reflects the breaking of the Cooper pairs, commonly
called the opening of the superconducting gap 2Δ-peak [3–7], and
its behavior is partially well described by the phenomenological
Bardeen–Cooper–Schrieffer formalism and some microscopic mod-
els [8–12]. However, seldom theoretical studies have been made so
far for the magnetic field dependent Raman scattering. Researchers
have mainly focused on the effect of magnetic fields on trans-
port properties [13,14]. Theoretical frameworks are also necessary
for understanding fundamental spectroscopic experiments of high
temperature superconductors in magnetic fields. These properties
are also critical to the understand of high temperature supercon-
ductivity.

The cuprate superconductors have high upper critical fields. En-
hanced magnetic fields are known to be detrimental to the super-
conductivity. By Raman spectroscopy it is found that the excita-
tions across the superconducting gap is suppressed by increasing
magnetic fields [15,16]. Experimentally, the position of the pair-
breaking peak is associated with the size of the Cooper pair break-
ing excitation and shows a softening at higher fields. The peak

intensity is proportional to the density of the superconducting con-
densate and becomes weak as the fields increased [15,16]. On the
other hand, it is indicated by the inelastic neutron-scattering ex-
periments that the external magnetic fields have a strong effect
on the spin dynamics in cuprate superconductors [17], thus there
is an intimate relationship between the spin fluctuation and su-
perconductivity. So from the theoretical point of view, the spin
fluctuation induced by the external magnetic field is essential to
account for the magnetic field dependent electronic Raman re-
sponse.

It is argued that the existence of the CuO2 plane structure in
cuprate superconductors dominates its characteristic feature, and
it has been shown from the ARPES experiments that its essential
physics is properly accounted by the t– J model on a square lat-
tice [18–20]. In our previous studies, we have well investigated the
doping and temperature dependent Raman scattering in cuprate
superconductors based on the t– J model within the kinetic energy
driven superconductivity [11,12], and qualitatively reproduce some
main features of electronic Raman response in cuprate supercon-
ductors. Our results have shown that as the temperature increased,
the intensities and positions of the pair-breaking peaks in both
B1g and B2g channels are suppressed. When increasing the doping
concentration, the intensities of the pair-breaking peaks in B1g and
B2g symmetry are strongly increased, and the energy scale of the
B2g symmetry gives a domelike shape of the doping dependent,
which the pair-breaking peak energy increases with increasing
doping in the underdoped regime, and reaches a maximum in the
optimal doping, then decreases in the overdoped regime [11,12].
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Following our previous studies, for the discussion of the mag-
netic field dependent Raman response of cuprate superconductors,
the t– J model can be expressed by including the Zeeman term as

H = −t
∑
iη̂σ

C †
iσ Ci+η̂σ + t′ ∑

iτ̂ σ

C †
iσ Ci+τ̂ σ + μ

∑
iσ

C †
iσ Ciσ

+ J
∑

iη̂

Si · Si+η̂ − εB

∑
iσ

σ C †
iσ Ciσ , (1)

with t , t′ for the nearest, second-nearest neighbor pairs, respec-
tively, J stands for the exchange energy, and η̂ = ±x̂,± ŷ, τ̂ =
±x̂ ± ŷ. C †

iσ (Ciσ ) is the electron creation (annihilation) operator,
Si = (Sx

i , S y
i , Sz

i ) are spin operators, and μ is the chemical poten-
tial. εB = gμB B is the Zeeman magnetic energy, with the Lande
factor g , Bohr magneton μB , and an external magnetic field B .

The t– J model is subject to a local constraint
∑

σ C †
iσ Ciσ � 1

to avoid the double occupancy and can be treated properly under
a scenario of charge-spin separation fermion-spin theory [21]. We
follow this scheme and decouple the electron operator in the t– J
model as

Ci↑ = h†
i↑S−

i , Ci↓ = hi↓ S+
i , (2)

where the spinful fermion operator hiσ = e−iΦiσ hi represents the
charge carrier and is called dressed holon, the spin operator Si
represents the spin degree of freedom with no charge. The spin-
less fermion hiσ obeys the anticommutation relation, and the spin
operators S+

i and S−
i obey Pauli spin algebra.

Within this formalism, the t– J model can be expressed as,

H = −t
∑

iη̂

(
h†

i+η̂↑hi↑S+
i S−

i+η̂
+ h†

i+η̂↓hi↓S−
i S+

i+η̂

)

− t′ ∑
iτ̂

(
h†

i+τ̂↑hi↑S+
i S−

i+τ̂
+ h†

i+τ̂↓hi↓S−
i S+

i+τ̂

)

− μ
∑
iσ

h†
iσ hiσ + Jeff

∑
iη̂

Si · Si+η̂ − 2εB

∑
i

S z
i , (3)

with Jeff = (1 − δ)2, and δ = 〈h†
iσ hiσ 〉 = 〈h†

i hi〉 is the hole doping
concentration.

We obtain the mean-field spin Green function and the dressed
holon diagonal and off-diagonal Green’s functions within the ki-
netic energy driven superconductivity in the presence of an exter-
nal magnetic field as,

D(0)(k,ω) = 1

2

∑
ν=1,2

Bk

ων(k)

1

ω − ων(k)
, (4)

g(k,ω) = Z F

∑
ν=1,2

U 2
ν(k)

1

ω − Eν(k)
, (5)

J +(k,ω) = − Z F

2

∑
ν=1,2

Δ̄(k)

Eν(k)

1

ω − Eν(k)
(6)

where ω1(k) = ωk , ω2(k) = −ωk , E1(k) = Ek , E2(k) = −Ek ,
U 2

1(k) = 1/2(1 + ξ̄k/Ek), U 2
2(k) = 1/2(1 − ξ̄k/Ek). ωk is the mean

field spin excitation spectra, Z F is the dressed holon quasi-
particle coherent weight, and the quasiparticle spectrum Ek =√

ξ̄2
k + Δ̄2(k), in which ξ̄k = Z F ξk , ξk is the mean field dressed

holon excitation spectrum, and the effective dressed holon pair
gap function Δ̄(k) = Z F Δ(k) = Z F Δ(cos kx − sin kx)/2 with the su-
perconducting order parameter Δ. Formally, we can write here the
mean field spin excitation spectra ωk in the external magnetic field
as

ωk =
√

ω2
0k + 4B2 (7)

in which ω0k has the same expression of the mean field spin ex-
citation spectra for the no magnetic field case given in Ref. [21].
The change of the spin excitation spectra reflects the influence of
external magnetic field on spin fluctuation. Meanwhile, the other
parameters Bk , ξk in the magnetic field is found to have the same
form as the no magnetic field cases shown in Ref. [21].

All these parameters are determined by the self-consistent
equations automatically. However, these self-consistent equations
are not intended to show here again and one can refer to Ref. [21].
As even though the spin excitation spectra ωk here is changed un-
der the external magnetic field, it is found that the forms of the
Green functions shown in Eqs. (4), (5), (6) behave consistently with
the no magnetic field case in Ref. [21]. So the self-consistent equa-
tions derived by these Green functions and expressed by the mean
field spin excitation spectra ωk , the mean field dressed holon ex-
citation spectrum ξk , the quasiparticle spectrum Ek and the ef-
fective dressed holon pair gap function Δ̄(k) must naturally have
the same forms in the no magnetic field case in Ref. [21]. But, the
values of these parameters determined by the self-consistent equa-
tions in the external magnetic field now are different from these in
the no magnetic field case, as the mean field spin excitation spec-
tra ωk now is changed and has an additional 4B2 under the radical
sign, thus the values of the quasiparticle spectrum Ek and the pair
gap function Δ̄(k) will naturally be changed by the external mag-
netic field.

In this charge-spin separation fermion-spin scheme, the elec-
tron diagonal and off-diagonal Green’s functions 〈〈Ciσ (t); C †

jσ (t′)〉〉,

〈〈C †
i↑(t); C †

j↓(t′)〉〉 are expressed by the convolutions of the diagonal
and off-diagonal dressed holon Green functions with the mean-
field spin Green function, given by

G(k,ω) = Z F

2N

∑
p

∑
ν,μ=1,2

Bp

ωμ(p)
U 2

ν(p + k)

· nF [Eν(p + k)] + nB [ωμ(p)]
ω + Eν(p + k) − ωμ(p)

(8)

Γ +(k,ω) = − Z F

4N

∑
p

∑
ν,μ=1,2

Δ̄(p + k)

Eν(p + k)

Bp

ωμ(p)

· nF [Eν(p + k)] + nB [ωμ(p)]
ω + Eν(p + k) − ωμ(p)

(9)

with nB(ω) and nF (ω) are the boson and fermion distribution
functions, respectively.

The electronic Raman scattering measures the properties of
Raman response function R̃(q,ω), which is proportion to the
imaginary part of the Raman density–density correlation function
χ̃ (q,ω),

R̃(q,ω) = − 1

π

[
1 + nB(ω)

]
Imχ̃ (q,ω), (10)

the density–density correlation function χ̃ (q,ω) is defined as
χ̃ (q, τ − τ ′) = −〈Tργ (q, τ )ργ (−q, τ ′)〉 with the effective charge

density ργ (q) taken as ργ (q) = ∑
kσ γkC †

k+ q
2 σ

Ck− q
2 σ . γk is the

Raman vertex determined by the incident or scattered light po-
larization vectors, thus it depends on the momentum throughout
the Brillouin on the square lattice given in Ref. [11].

Above these, one can get the Raman density–density correlation
function χ̃ (Ω) in the case of the low temperatures and momen-
tum transfers taken as zero q → 0,
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