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In the recent past, recurrence quantification analysis (RQA) has gained an increasing interest in various
research areas. The complexity measures the RQA provides have been useful in describing and analysing a
broad range of data. It is known to be rather robust to noise and nonstationarities. Yet, one key question
in empirical research concerns the confidence bounds of measured data. In the present Letter we suggest
a method for estimating the confidence bounds of recurrence-based complexity measures. We study the
applicability of the suggested method with model and real-life data.
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1. Introduction

Recurrence Plots (RP) and their quantification (recurrence quan-
tification analysis, RQA) [11] have become rather popular in vari-
ous fields of science. The complexity measures based on RPs have
helped to gain a deeper insight into diverse kinds of phenomena
and experimental data. In this Letter we propose a straightfor-
ward extension to the existing RQA framework which allows us
to not only compute these complexity measures, but also to esti-
mate their confidence bounds. We do this by using a well-known
resampling paradigm – the bootstrap. We show that the confi-
dence bounds of RQA measures come with the regular analysis at
virtually no extra costs and that the method can be useful for com-
paring univariate time series in a statistically sound fashion.

2. Recurrence Plots and their quantification

Recurrence is a fundamental property of dynamical systems. On
this basis the data analysis tool called Recurrence Plot (RP) has
been devised by Eckmann et al. [1] which visualises recurrences in
the phase space of an n-dimensional state vector �xi (i = 1, . . . , N),

Ri, j = Θ
(
ε − ‖�xi − �x j‖

)
, (1)

where Θ is the Heaviside function, ‖ · ‖ is a norm and ε is the
recurrence threshold. The threshold ε can be defined as an abso-
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Fig. 1. Sample RPs for different dynamical systems. (a) Gaussian white noise, (b) the
Lorenz attractor with ρ = 28, β = 8/3, σ = 10 and (c) a sine wave. Parameters were
m = 3, τ = 3, ε adjusted to RR = 0.1.

lute value or in dependence on other criteria. For the examples
in Fig. 1 we chose ε so that the overall RR, Eq. (2), is 10%. The
binary N × N matrix allows for a 2-dimensional visualisation of
an n-dimensional attractor’s recurrence properties (Fig. 1). From
this matrix a number of well-defined complexity measures can be
extracted (see [11] and references therein). If only univariate time-
series are available the state vectors can be reconstructed using
delay embedding with a given embedding dimension m and a de-
lay τ [14,19].

2.1. RQA measures

The information contained in an RP can be quantified by mea-
sures of complexity based on recurrence point density, diagonal

0375-9601/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2009.04.045

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:schinkel@agnld.uni-potsdam.de
http://dx.doi.org/10.1016/j.physleta.2009.04.045


2246 S. Schinkel et al. / Physics Letters A 373 (2009) 2245–2250

and vertical line structures. The simplest measure is the recurrence
rate RR,

RR = 1

N2

∑

i, j

Ri, j, (2)

which denotes the overall probability that a certain state recurs.
A measure based on the distribution of diagonal structures P (l) is
the determinism DET

DET =
∑lmax

l�lmin
lP (l)

∑lmax
l=1 lP (l)

, (3)

the ratio of recurrence points in diagonal lines (of at least length
lmin) to all recurrence points. DET reflects how predictable a sys-
tem is. The measures Lmax and 〈L〉 are the maximum and average
lengths of the diagonal lines in P (l).

Further complexity measures quantify the vertical structures in
an RP. The ratio of points forming vertical line structures of a min-
imal length vmin to all recurrence points is called laminarity

LAM =
∑vmax

v�vmin
v P (v)

∑vmax
v=1 v P (v)

, (4)

a measure sensitive to laminar states and regimes of intermittency.
From the distribution of the vertical line structures P (v) we can
again compute the maximal vertical line length V max and the av-
erage called trapping time TT .

These measures can be computed from the whole RP or in mov-
ing, possibly overlapping, windows of size w shifted along the
main diagonal of the RP by an increment of s. This approach is
useful to reveal qualitative transitions in a system.

The RQA measures provide a qualitative description of a system
in terms of complexity measures. It allows to detect transitions in
the system’s dynamics, e.g. transitions from period to chaos, from
strange nonchaotic attractors (SNA) to chaos or even transitions
from chaos to chaos [9,13].

In the next section we will focus on how to derive a quantita-
tive judgement from these measures.

3. Confidence bounds of RQA measures

The RQA measures have been quite useful for the analysis of a
variety of data. Yet, in order to not only detect qualitative changes
in a system’s dynamics but to be able to judge their significance
or to compare two univariate time series, it is necessary to de-
rive a quantitative judgement such as a confidence interval. For
recurrence-based complexity measures those intervals can be esti-
mated using a resampling paradigm.

3.1. Resampling statistics – the bootstrap

Statistical techniques based on resampling were among the
first methods ever thought of. Sir R.A. Fisher himself introduced
this idea when pondering over Gosset’s t-distribution [3,4]. Due
to lacking computational power, these ideas were not feasible at
that time. With the advent of powerful, low-cost computers these
methods have gained a broad interest and have been proven to
be very reliable and powerful. In this Letter we focus on one par-
ticular resampling method – the bootstrap [2]. The bootstrap is
a nonparametric method for estimating the variance of a statis-
tic of interest. It relies on resampling of a given distribution with
replacement and does not require any specific probability distribu-
tion. The bootstrap procedure works as follows:

Given a random sample xi (i = 1,2, . . . ,n) of size n, from an
unspecified probability distribution we compute a statistic of in-
terest, say, the mean 〈x〉. In order to estimate the variance of that

statistic we draw at random and with replacement the same num-
ber (n) of elements from xi to obtain the resampled distribution
x∗

i . From x∗
i we again compute the statistic of interest. With re-

placement means that we can draw the individual elements in xi
more than once. Doing this a larger number of times1 we obtain
the empirical distribution of the statistic of interest, P̂ 〈x〉 . From the
empirical distribution we can compute the percentiles α/2 and
1 − α/2 and define the (100 − α)% confidence interval (CI) as the
range between those two percentiles.

The empirical distribution could also be used to perform hy-
pothesis testing. We opt for the estimation of confidence intervals
only. The interpretation of hypothesis tests, especially p-values, the
chosen indicator of significance, is currently under discussion and
not agreed upon by the frequentist and Bayesian schools. Therefore
we follow the suggestions of Hubbard and Lindsay [6] and only es-
timate the confidence intervals of the RQA measures. This allows
us to not only detect transitions in the dynamics of one system or
to differences between the dynamics of two systems but to provide
a judgement whether those differences are statistically significant.
While this is not statistical testing in the narrowest sense, we think
this approach is more appropriate as the data is explicitly shown
and the investigator may judge for him-/herself.

3.2. Structure preserving resampling

Since the bootstrap relies on resampling with replacement we
cannot simply bootstrap the RP matrix as such for two reasons.
First of all, we could draw one of the black points more than
once. As the RP is a binary matrix by definition this is not possi-
ble. Secondly, randomly resampling an RP would necessarily result
in a loss of most of the small-scale structures in it (i.e. diago-
nal and vertical lines). A loss of structures would result in an RP
corresponding to noise. This is not desirable because we want to
compare different systems against each other and not test against
randomness/noise.

As stated above, RQA measures like DET or LAM rely on the
distribution of line structures P (l) and P (v). Therefore we present
a method that ensures that the structural elements are preserved
during resampling. We only resample the distributions of diagonal
and vertical lines, P (l) and P (v). It is important to note that we
need to resample all lines in P (l) and P (v), even those of only
length 1, thereby obtaining P∗(l) and P∗(l), respectively. The value
of determinism is then computed according to:

DET∗i =
∑lmax

l�lmin
lP∗i(l)

∑lmax
l=1 lP∗i(l)

(i = 1,2, . . . ,nbs) (5)

for each bootstrapped sample (see Fig. 2). The computation for a
bootstrapped sample of 〈L〉∗ , LAM∗ and TT∗ is done accordingly.
Repeating this procedure nbs times we obtain the empirical distri-
butions P̂DET , P̂ 〈L〉 , P̂ LAM and P̂TT . From the empirical distributions
we can calculate the percentiles α/2 and 1 − α/2. The two-sided
(100 − α)% confidence interval is then defined as the range be-
tween those two percentiles. The value α determines the spread
of the interval, the smaller α, the broader the interval. As we leave
the structures in the RP intact, we refer to this procedure as struc-
ture preserving resampling.

For obvious reasons this approach is restricted to DET , 〈L〉, LAM
and TT . V max and Lmax already represent maxima in the distri-
bution and are therefore very unlikely to show variation and the
upper bound cannot vary at all. Furthermore, we can apply this

1 The number of resamplings is not generally agreed upon but common guide-
lines suggest values between 800 and 1500. Note also that the number of re-
sampling decreases with the randomness of the samples drawn. In the present
manuscript we use the MT19937 algorithm, which has a period of 219937 − 1 [12].
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