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This Letter considers the problem of delay-range-dependent stability for fuzzy bi-directional associative
memory (BAM) neural networks with time-varying interval delays. Based on Lyapunov–Krasovskii theory,
the delay-range-dependent stability criteria are derived in terms of linear matrix inequalities (LMIs). By
constructing new Lyapunov–Krasovskii functional, stability conditions are dependent on the upper and
lower bounds of the delays, which is made possible by using some advanced techniques for achieving
delay dependence. A numerical example is given to illustrate the effectiveness of the proposed method.
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1. Introduction

It is well known that the dynamics of neural networks such as cellular neural networks (CNNs) [1], Hopfield neural networks (HNNs)
[2] and bidirectional associative memory (BAM) [3] have been deeply investigated in recent years due to its applicability in solving some
image processing, signal processing, optimization and pattern recognition problems. Therefore, the investigation on the dynamical behavior
of the neural networks is very important and significant [4–10]. The bidirectional associative memory (BAM) model known as an extension
of the unidirectional autoassociator of Hopfield. This kind of neural networks has been widely studied due to its promising potential for
applications in different fields such as combinatorial optimization, pattern recognition, signal and image process, etc. Thus, the stability
analysis is a important step for the design and applications for this neural network. The stability analysis of BAM neural networks with
delays has attracted considerable interest, see, for example [11–19] and references therein. In electronic implementation of analog neural
networks, nevertheless, the delays are usually time-varying due to the finite switching speed of amplifiers. It has been showed that time
delays are often a source of instability for neural networks [20]. Therefore, more and more results have been reported for delayed BAM
neural networks [17,18,21].

Among various methods developed for the analysis and synthesis of complex nonlinear systems, fuzzy logic control is an attractive and
effective rule-based one. In many of the model-based fuzzy control approaches, the well-known Takagi–Sugeno (T–S) fuzzy model [22] is
a popular and convenient tool in functional approximations. During the last decade, the stability analysis and controller synthesis problem
for systems in T–S fuzzy model has been studied extensively and numerous methods have been proposed in [23–25]. However, in contrast
to the pure neural network or fuzzy system, the fuzzy neural network possesses both their advantages [26,27]. It combines the capability
of fuzzy reasoning in handling uncertain information [28] and the capability of artificial neural networks in learning from process. It has
been showed that fuzzy neural network can approximate a wide range of nonlinear functions to any desired degree of accuracy under
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certain condition [29]. In recent years, the concept of incorporating fuzzy logic into a neural network has grown into a popular research
topic [30–36]. In [30], the global asymptotic stability problem of T–S fuzzy BAM neural networks with time-varying delays and parameter
uncertainties is considered. In [30], the generalized T–S fuzzy models can be used to represent some complex nonlinear systems by having
a set of nonlinear delayed BAM neural networks as its consequent parts [23]. However, the results in [30] are delay-independent. To
the best of our knowledge, few results on delay-range-dependent stability have been reported for T–S fuzzy BAM neural networks with
time-varying interval delays.

In this Letter, we will give the delay-range-dependent sufficient condition which guarantees the uniqueness and global stability of the
equilibrium solution for fuzzy BAM neural networks with time-varying interval delays. By using free-weighting matrix method [37,38], the
stability criteria for the fuzzy delayed BAM neural networks are expressed in the form of LMIs. A numerical example will be provided to
illustrate the usefulness and less conservativeness of the developed techniques.

Notation. The notations in this Letter are quite standard. The superscript “T ” stands for the transpose of a matrix; R
n and R

n×m denote
the n-dimensional Euclidean space and the set of all n × m real matrices, respectively. The notation X > Y (X � Y ) means that the X − Y
is positive definite (positive semi-definite), respectively; I is the identity matrix with appropriate dimensions; The symmetric terms in a
symmetric matrix are denoted by “∗”; Matrices, if not explicitly stated, are assumed to have compatible dimensions.

2. Problem formulation

The model of BAM neural networks with time-varying delays can be expressed as follows:{
u̇i(t) = −aiui(t) + ∑n

j=1 b ji F j(v j(t)) + ∑n
j=1 c ji F j(v j(t − τ (t))) + Ii,

v̇ j(t) = −d j v j(t) + ∑m
i=1 ei j Gi(ui(t)) + ∑m

i=1 f i j Gi(ui(t − d(t))) + Ī j,
(1)

for i = {1,2, . . . ,m}, j = {1,2, . . . ,n}, t > 0, where ui(t) and v j(t) denote the activations of the ith neurons and jth neurons, respectively;
F j(·) and Gi(·) stand for the signal functions of the ith neurons and jth neurons, respectively; ai and d j are positive constants, they stand
for the rate with which the cell i and j reset their potential to the resting state when isolated from the other cells and inputs: b ji , c ji ,
ei j and f i j denote the synaptic connection weights; Ii and Ī j denote the external inputs at time t . The bounded function τ (t) and d(t)
represent unknown delays of systems and satisfy

τm � τ (t) � τM , τ̇ (t) � τμ, (2)

dm � d(t) � dM , ḋ(t) � dμ. (3)

(A) We assume that there exist positive w1
i , w2

j such that∣∣F j(x1) − F j(x2)
∣∣ � w2

j |x1 − x2|,
∣∣Gi(x1) − Gi(x2)

∣∣ � w1
i |x1 − x2| (4)

for all x1, x2 ∈ R, i = 1,2, . . . ,m, j = 1,2, . . . ,n.
The system (1) is supplemented with initial values given by{

ui(t) = φui(t), t ∈ [−dM ,0], i = 1,2, . . . ,m,

v j(t) = φv j(t), t ∈ [−τM ,0], j = 1,2, . . . ,n,

where φui(t), φvi(t) are continuous functions defined on [−dM ,0] and [−τM ,0], respectively.
The system (1) is equivalent to the vector form as follows:{

u̇(t) = −Au(t) + B F (v(t)) + C F (v(t − τ (t))) + I,

v̇(t) = −D v(t) + EG(u(t)) + F G(u(t − d(t))) + Ī,
(5)

where

u = (u1, u2, . . . , um)T , v = (v1, v2, . . . , vn)T ,

A = diag(a1,a2, . . . ,am), D = diag(d1,d2, . . . ,dn), B = [
(b ji)n×m

]T
, C = [

(c ji)n×m
]T

, I = (I1, I2, . . . , Im)T ,

E = [
(ei j)m×n

]T
, F = [

( f i j)m×n
]T

, Ī = ( Ī1, Ī2, . . . , Īn)T ,

and nonlinear active functions

F
(

v(t)
) = F j

(
v j(t)

)
n×1, F

(
v
(
t − τ (t)

)) = F j
(

v j
(
t − τ (t)

))
n×1,

G
(
u(t)

) = Gi
(
ui(t)

)
m×1, G

(
u
(
t − d(t)

)) = Gi
(
ui

(
t − d(t)

))
m×1.

As above mentioned, it is reasonable to assume that the neural network (5) has only one equilibrium point u∗ = (u∗
1, u∗

2, . . . , u∗
m),

v∗ = (v∗
1, v∗

2, . . . , v∗
n). Then, we will shift the equilibrium points u∗ and v∗ to the origin. The transformation x(·) = u(·) − u∗ and y(·) =

v(·) − v∗, i = 1,2, . . . ,m, j = 1,2, . . . ,n, put system (5) into the following form:{
ẋ(t) = −Ax(t) + B f (y(t)) + C f (y(t − τ (t))),

ẏ(t) = −D y(t) + Eg(x(t)) + F g(x(t − d(t))),
(6)

where g(x(t)) = G(x(t) + u∗) − G(u∗), f (y(t)) = F (y(t) + v∗) − F (v∗). Then from (A), we have

gT (
x(t)

)
g
(
x(t)

)
� xT (t)W T

1 W1x(t), f T (
y(t)

)
f
(

y(t)
)
� yT (t)W T

2 W2 y(t),

where W1 = diag(w1
1, w1

2, . . . , w1
m), W2 = diag(w2

1, w2
2, . . . , w2

n).
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