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It was predicted by Tewari et al. (2008) [15] that a teleportation-like electron transfer phenomenon
is one of the novel consequences of the existence of Majorana fermion, because of the inherently
nonlocal nature. In this work we consider a concrete realization and measurement scheme for this
interesting behavior, based on a setup consisting of a pair of quantum dots which are tunnel-coupled
to a semiconductor nanowire and are jointly measured by two point-contact detectors. We analyze the
teleportation dynamics in the presence of measurement back-action and discuss how the teleportation
events can be identified from the current trajectories of strong response detectors.

© 2014 Published by Elsevier B.V.

The search for Majorana fermions in solid states has been at-
tracting a great deal of attention in the past years [1–8]. In solid
states, it has been predicted that the Majorana bound states (MBSs)
can appear for instance in the 5/2 fractional quantum Hall system
[9] and the p-wave superconductor and superfluid [10]. In par-
ticular, an effective p-wave superconductor can be realized by a
semiconductor nanowire with Rashba spin–orbit interaction and
Zeeman splitting and in proximity to an s-wave superconductor
[3–6]. This opens a new avenue of searching for Majorana fermions
using the most conventional materials. Also, some demonstrating
schemes were proposed based on various transport signatures, in-
cluding the tunneling spectroscopy which may reveal characteristic
zero-bias conductance peak [11,12] and peculiar noise behaviors
[13,14], the nonlocality nature of the MBSs [15,16], and the 4π pe-
riodic Majorana–Josephson currents [1–3,17]. In the aspect of ex-
periment, exotic signatures that may reveal the existence of MBSs
have been observed in the system of semiconductor nanowire in
proximity to an s-wave superconductor [18–21].

An inevitable consequence of the existence of Majorana zero
modes is that the fermion quasiparticle excitations are inherently
nonlocal. To be specific, let us consider a semiconductor nanowire
in the topological regime which thus supports the MBSs at the
two ends [3,5,6,18], and denote the MBSs by Majorana operators
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γ1 and γ2. They are related to the regular fermion operator in
terms of f † = (γ1 + iγ2)/

√
2 and its Hermitian conjugate f . This

connection implies some remarkable consequences. For instance, if
an electron with energy smaller than the energy gap between the
Majorana zero mode and other exited states is injected into the
system, we can only have the excitation described by f and f †.
This means that a single electron is “split” into two Majorana
bound states which are, however, spatially separated. In this work,
instead of exploiting certain indirect transport signatures, we dis-
cuss a possible and very direct way to demonstrate this intrinsic
nonlocality of the paired Majorana modes.

The proposed scheme is schematically displayed in Fig. 1, where
the two MBSs, generated at the ends of the nanowire, are tunnel-
coupled to two quantum dots (QDs), respectively. Moreover, the
QDs are jointly probed by the nearby quantum-point-contact (QPC)
detectors. This proposal is motivated by the nowadays state-of-
the-art technique, which enables the QPC current to sensitively
probe an extra single electron in the nearby quantum dot [22].
In Ref. [15], an equivalent “dot-MBSs-dot” system is analyzed by
assuming an extra electron initially in one of the QDS and consid-
ering its transmission through the MBSs in a vanished hybridiza-
tion limit. Corresponding to the nanowire realization in Fig. 1, their
prediction indicates that, in a “long-wire” limit, the electron can
transmit through the nanowire on a finite (short) timescale, re-
vealing thus a “teleportation” phenomenon. In our present work,
following Ref. [15], we call this ultrafast transfer behavior telepor-
tation, which is actually a remarkable consequence of Majorana’s
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Fig. 1. Schematic setup of using two point-contact detectors to demonstrate the
Majorana-nonlocality-induced teleportation-like electron transfer between two re-
mote quantum dots. The semiconductor nanowire is in contact with an s-wave
superconductor, so that under appropriate conditions a pair of Majorana bound
states (MBS) are anticipated to appear at the ends of the nanowire. Here we show
the schematic closed circuit, in which the chemical potential of the superconductor
and the bias voltages across the detectors are explicitly defined.

nonlocality. Related to the scheme of joint-measurements shown
in Fig. 1, we will carry out the teleportation dynamics under the
influence of measurement back-action, and discuss how the tele-
portation events can be identified from the current trajectories of
strong response detectors.

1. Model

The setup of Fig. 1 can be described by the following Hamilto-
nian

H = Hsys + H pc . (1)

The system Hamiltonian, Hsys , describes the MBSs plus the single-
level QDs and their tunnel coupling as follows [2,12–15]

Hsys = i
εM

2
γ1γ2 +

∑
j=1,2

[
ε jd

†
jd j + λ j

(
d†

j − d j
)
γ j

]
. (2)

Here γ1 and γ2 are the Majorana operators associated with the
two MBSs at the ends of the nanowire. The two MBSs interact with
each other by a strength εM ∼ e−L/ξ , which damps exponentially
with the length (L) of the nanowire, with a characteristic length of
the superconducting coherent length (ξ ). d1(d

†
1) and d2(d

†
2) are the

annihilation (creation) operators of the two single-level quantum
dots, while λ1 and λ2 are their coupling amplitudes to the MBSs.
In practice, it will be convenient to switch from the Majorana rep-
resentation to the regular fermion one, through the transformation
of γ1 = i( f − f †) and γ2 = f + f †. We can easily check that f and
f † satisfy the anti-commutative relation, { f , f †} = 1. After an ad-
ditional local gauge transformation, d1 → id1, we reexpress Eq. (2)
as

Hsys = εM

(
f † f − 1

2

)
+

∑
j=1,2

[
ε jd

†
jd j + λ j

(
d†

j f + f †d j
)]

− λ1
(
d†

1 f † + f d1
) + λ2

(
d†

2 f † + f d2
)
. (3)

It should be noticed that the tunneling terms in this Hamiltonian
only conserve charge modulo 2e. This reflects the fact that a pair
of electrons can be extracted out from the superconductor conden-
sate and can be absorbed by the condensate.

The other Hamiltonian in Eq. (1), H pc , is for the two point-
contacts which reads

H pc =
∑
j=1,2

∑
l j ,r j

[(
εl j c

†
l j

cl j + εr j c
†
r j

cr j

) + (
w jc

†
l j

cr j + H.c.
)]

. (4)

This Hamiltonian simply describes electron tunneling through a
potential barrier between two electronic reservoirs (with electron
creation and annihilation operators, c†

l j(r j)
and cl j(r j)). We assume

that the tunneling amplitudes (w j ) are approximately of energy
independence. Thus w j does not depend on the associated states

“l j ” and “r j”. However, in w j we should include the effect of the
nearby quantum dot, since its occupation would change the tun-
neling amplitudes. We account for this effect in terms of w j =
Ω j + 	Ω jd

†
jd j .

2. Teleportation

Let us consider the transfer problem of an extra electron be-
tween the two quantum dots, which is assumed initially in the left
quantum dot.

In this part we assume a simpler setup in the absence of the
point-contact detectors [15].

In particular, we consider the weak interaction limit εM → 0,
in order to reveal the remarkable teleportation behavior. Using
the transformed representation, |n1,nM ,n2〉 describes the possible
charge configuration of the dot-MBSs-dot system, where n1(2) and
nM denote, respectively, the electron number (“0” or “1”) in the left
(right) dot and the central MBSs. Totally, we have eight basis states,
which can be divided into two subspaces: |100〉, |010〉, |001〉, |111〉
with odd parity (electron numbers); and |110〉, |101〉, |011〉, |000〉
with even parity. Associated with our specific initial condition, we
will only have the odd-parity states involved in the state evolution.
Moreover, for simplicity, we assume λ1 = λ2 = λ and ε1 = ε2 = 0
throughout this work.

Simple calculation can give the occupation probabilities of
the left and right dots, respectively, as P1(t) = cos2(λt) and
P2(t) = sin2(λt). Here, for each of the probabilities, it contains
two possible occupations: |100〉 and |111〉 for P1(t); |001〉 and
|111〉 for P2(t). Now, we introduce (extract) the partial proba-
bility P (1)

2 (t) = |〈001|e−iHsyst |100〉|2 from P2(t), which has also a

simple form, P (1)
2 (t) = sin4(λt). Similarly, we may define P (2)

2 (t) =
|〈111|e−iHsyst |100〉|2, which can be obtained simply by P (2)

2 (t) =
P2(t) − P (1)

2 (t) = sin2(λt) cos2(λt). Based on these simple manip-

ulations, of great interest is the result of P (1)
2 (t), since it implies

that, even in the limit of εM → 0 (very “long” nanowire), the elec-
tron in the left dot can transmit through the MBSs and appear in
the right dot on some finite (short) timescale. This is the remark-
able “teleportation” phenomenon discussed in Ref. [15] which,
surprisingly, holds a “superluminal” feature. In the following, to
prove this teleportation behavior, we propose to use QPC detectors
to perform a coincident measurement of both the occupation num-
bers of the left and the right dots. This type of measurement can
distinguish the process responsible for P (1)

2 (t) from that responsi-

ble for P (2)
2 (t).

3. Demonstration

Now we turn to the measurement setup of Fig. 1. Physically,
the measurements will cause back-action on the charge transfer
dynamics in the central dot-MBSs-dot system. This effect can be
described by a master equation, formally expressed as [23]

ρ̇ = −iLρ −Rρ. (5)

The first term denotes Lρ = [Hsys,ρ], and the second term de-
scribes the measurement back-action. More specifically, Rρ =
1
2

∑
j=1,2{[w†

j, w̃(−)
j ρ−ρ w̃(+)

j ]+H.c.}, where w̃(±)
j = C (±)

j (±L)w j .

C (±)
j (±L) are the Liouvillian counterparts of the QPC spectral func-

tions C (±)
j (±ω), which were obtained explicitly in Ref. [23]. In this

work, we restrict to a wideband limit and large bias condition
for the point-contact detectors, which allow us to approximate
C (±)

j (±L) by C (±)
j (0). More explicitly, we have [23]: C (±)

j (0) =
±2π gL gR eV j/(1 − e∓βeV j ), where gL(R) is the density-of-states
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