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Universal set of quantum gates are realized from quantum-dot spin qubits inside a cavity via two-channel
Raman interactions. Individual addressing and effective switch of the cavity mediated interaction are
directly possible here. This simple realization of all wanted interaction for selective qubits makes current
scenario more suitable for scalable quantum computation.
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Quantum computer can provide a possible alternative for cer-
tain hard problems in comparison with classical computer with
the help of the principle of coherent superposition and quantum
entanglement [1]. Solid state system has been generally accepted
to be the most promising hardware implementation for quantum
computation since it can be easily integrated into large quantum
networks. Recently, with the development of fabrication and ma-
nipulation technologies in semiconductor quantum dots, quantum
computation based on this system has attracted much attention.
But, in a quantum dot system, decoherence is still an important
and challenging issue. However, localized electron spin state has
relatively long decoherence time, so it is more suitable as qubit.
In addition, the realization of gate operations on arbitrary two
qubits is another challenge in solid state system. In order to con-
quer this problem, Imamoglu and coworkers introduced the quan-
tum dot cavity QED scheme [2] where the cavity mode can be
used as a data bus for long-distance information transfer and fast
coupling of arbitrary two qubits. Meanwhile, this setup can sup-
port parallel quantum logic gate operations. From then on, many
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schemes with quantum dots embedded in cavity have been pre-
sented [3–6].

In this Letter, we propose a scenario for realizing quantum
computation with quantum dots embedded in a single-mode mi-
crocavity via a two-channel Raman interaction. Qubits are en-
coded on the conduction-band electron-spin states of semiconduc-
tor quantum dot. The valence-band state is used as an auxiliary
state, which can be adiabatically eliminated. The decoherence time
of qubits is long enough to complete indispensable gate operations.
In atomic cavity QED system, the two-channel Raman interaction
model has been generally acceptable as a better alternative to the
single-channel one [7–11] as it can easily realize and control the
needed interactions. Therefore, it is very significative to general-
ized the two-channel Raman interaction model to quantum dot
cavity QED system for solid quantum computation. In fact, in com-
parison with atomic cavity QED, quantum-dot cavity QED is even
more superior because quantum dots are always fixed in a cavity,
thus the scale up of the solid nature system is quite straightfor-
wardly. Meanwhile, individual addressing of quantum dot qubits,
which is of great importance and challenge for scalable quantum
computation, is directly possible taken into account the fact that
quantum dot is generally fabricated as a mesoscopic quantum sys-
tem.

We next detail our scheme. Consider N III–V semiconductor
quantum dots embedded in a microcavity. All the quantum dots
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Fig. 1. The relevant energy levels of a single quantum dot. |↑〉 and |↓〉 denote the
spin up and down states of the conduction-band electron, respectively, and |v〉 de-
notes the valence-band state. ω j ( j = 1,2,3) are the frequencies of classical laser
fields and ωc is the frequency of the cavity field.

are doped such that each quantum dot has a single conduction-
band electron and a full valence band. Under the condition of
quantum confinement, the conduction-band electron is always in
the ground state orbital. The conduction-band electron-spin states,
|↑〉 and |↓〉, by a uniform magnetic field are encoded as the qubit
states. The relevant energy levels of every quantum dot can be
treated as a three-level configuration [2,3], as shown in Fig. 1,
where h̄ω↑ , h̄ω↓ and h̄ωv are energies of the state |↑〉, |↓〉 and |v〉,
respectively. ω↑↓ = ω↑ − ω↓ and ω j with j = 1,2,3 are the fre-
quencies of classical laser fields and ωc is the frequency of the cav-
ity field. �1, �2 and � are three detunings. Every quantum dot is
excited via two Raman channels by using classical laser fields and
the cavity field. One channel consists of laser fields 1 and 3, the
other consists of laser field 2 and the microcavity field. Both chan-
nels are in the two-photon resonance, i.e., �1 = ω↑ − ωv − ω2 =
ω↓ − ωv − ωc − � and �2 = ω↑ − ωv − ω1 = ω↓ − ωv − ω3, so
we have ω↑↓ + � = ω2 − ωc and ω↑↓ = ω1 − ω3. The total system
consists of N quantum dots, a microcavity and 3N classical laser
fields, and the Hamiltonian of which can be described as (assum-
ing h̄ = 1)

H = H0 + H int, (1a)

H0 =
N∑

i=1

(
ω↑σ i↑↑ + ω↓σ i↓↓ + ωvσ

i
v v

) + ωca†a, (1b)

H int =
N∑

i=1

[(
Ω1e−iω1t + Ω2e−iω2t)σ i↑v

+ (
Ω3e−iω3t + ga

)
σ i↓v + H.c.

]
, (1c)

where Ω j with j = 1,2,3 are Rabi frequencies of classical fields,
g is coupling constant, and σmn = |m〉〈n| (m,n =↑,↓, v). In writing
Eq. (1c), we have assumed that Ω i

j = Ω j and gi = g .
The interaction Hamiltonian (1c) can be rewritten, in the inter-

action picture with respect to (1b), as

H I =
N∑

i=1

[
Ω2σ

i↑v ei�i
1t + (

Ω1σ
i↑v + Ω3σ

i↓v

)
ei�i

2t

+ gaσ i↓v ei(�i
1+�i)t + H.c.

]
. (2)

In the case of �1,�2 � Ω j, g and �1 −�2 � {�,
(�1+�2)Ω1Ω2

2�1�2
,

(�1+�2)Ω2Ω3
2�1�2

, (2�1+�)Ω1 g
2�1(�1+�)

, (2�1+�)Ω3 g
2�1(�1+�)

}, the valence-band state can
be adiabatically eliminated [8]. We can then obtain an effective
Hamiltonian by using rotating-wave approximation

H(1)
e =

N∑
i=1

[
Ω1Ω3

�i
2

(
σ i↑↓ + σ i↓↑

) + gΩ2

2

(
1

�i
1

+ 1

�i
1 + �i

)

× (
a†σ i↑↓e−i�i t + aσ i↓↑ei�i t)], (3)

where we have neglected the ac-Stark energy shift, which can
be easily compensated [12] by an addition laser field dispersively
coupled to an energy level outside the qubit space in real experi-
mental implementation.

For simplification of calculation, we choose a new computa-
tional basis |±〉i = 1√

2
(|↑〉i ± |↓〉i). We can rewrite the effective

Hamiltonian (3) as

H(2)
e =

N∑
i=1

[
A

(
2Si

z − Si− + Si+
4

a†e−i�i t

+ 2Si
z + Si− − Si+

4
aei�i t

)
+ B Si

z

]
, (4)

where A = gΩ2
2 ( 1

�i
1

+ 1
�i

1+�i ), B = 2Ω1Ω3

�i
2

, S+ = |+〉〈−|, S− =
|−〉〈+| and Sz = 1

2 (|+〉〈+| − |−〉〈−|).
Assume that B � �i, A and in the Sz framework H ′

0 = B Si
z , the

Hamiltonian (4) can be reduced to

He =
N∑

i=1

[
A

2

(
a†e−i�i t + aei�i t)Si

z

]

=
N∑

i=1

[
A

2

(
a†e−i�i t + aei�i t)(σ i↑↓ + σ i↓↑

)]
. (5)

For the implementation of quantum computation, the most im-
portant steps should be the realization of a set of universal quan-
tum logical gates, i.e., two-qubit logic gate, controlled-not gate or
controlled phase shift, and arbitrary single-qubit rotations. Here we
first introduce the implementation of a controlled phase shift. We
turn on three classical laser fields ω j on quantum dots m and n,
let quantum dot m interacts with quantum dot n under the con-
dition of �m = �n = �. Then the time evolution operator can be
expressed as

U = e−iα(t)(
∑

l Sl
z)

2
e−iβ(t)

∑
l Sl

zae−iγ (t)
∑

l Sl
za†

, (6)

where l = m,n. The coefficients α(t), β(t) and γ (t) can be calcu-
lated by solving Schrödinger equation as [13,14]

β(t) =
t∫

0

A

2
ei�t′ dt′ = A

2i�

(
ei�t − 1

)
, (7a)

γ (t) =
t∫

0

A

2
e−i�t′ dt′ = −A

2i�

(
e−i�t − 1

)
, (7b)

α(t) = i

t∫
0

β(t′) A

2
e−i�t′ dt′ = A2

4�

[
t − i

�

(
ei�t − 1

)]
. (7c)

Setting �t = 2ξπ (ξ = 0,1, . . .) results in β(t) = γ (t) = 0 and

α(t) = A2

4�
t . Then, the total evolution operator becomes

Um,n = e−iBt(
∑

l Sl
z)e−i A2

4�
t(

∑
l Sl

z)
2
, (8)

under which the state evolutions of |++〉mn , |+−〉mn , |−+〉mn and
|−−〉mn are
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