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This Letter proposes a new numerical scheme for integrating the non-linear diffusion equation. It is
shown that it is linearly stable. Some tests are presented comparing this scheme to a popular decentered
version of the linearized Crank–Nicholson scheme, showing that, although this scheme is slightly less
accurate in treating the highly resolved waves, (i) the new scheme better treats highly non-linear systems,
(ii) better handles the short waves, (iii) for a given test bed turns out to be three to four times more
computationally cheap, and (iv) is easier in implementation.
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1. Introduction

Most fluid mechanical systems exhibit dissipation, either due
to viscosity or turbulent processes. Even when the phenomena
of interest are governed by essentially inviscid processes, it is of-
ten necessary to incorporate some numerical dissipative effects in
numerical models [1], for instance, to remove spurious energy ac-
cumulation at the smallest resolved scales.

In atmospheric models (numerical weather prediction, general
circulation models, climate modeling), planetary boundary layer
turbulence is one of the primary processes for transport of energy,
momentum and moisture. The turbulence schemes are often em-
pirical subgrid parameterizations such as, for instance, the Louis
scheme [2], or the more sophisticated Turbulent Kinetic Energy
(TKE) schemes (for an example see Ref. [3]). Those turbulent dif-
fusive processes can get different forms, ranging from a simple
non-linear diffusion equation to various non-linear higher-order
differential operators. Since such parameterizations exhibit already
a substantial modelling error in their mathematical formulation,
their accuracy is of less importance than the computational effi-
ciency.
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A well-known scheme for treating the diffusion equation is the
Crank–Nicholson scheme [4]. If this scheme is applied to the lin-
ear diffusion equation expressed in terms of second-order centered
spatial derivatives, it relies on the inversion of a tridiagonal matrix
to compute the time step. As was shown in Ref. [5], this method
is problematic in the case of non-linear diffusion in the planetary
boundary layer. The non-linearity is situation dependent, leading
to two problems: (i) even though many algorithms for solving
non-linear equations exist [6], it is very unpractical to apply them
for solving the Crank–Nicholson equation in the context of atmo-
spheric model codes, and (ii) for long time steps the system may
start to exhibit artificial oscillations.

In practice, algorithmic constraints in atmospheric models often
force us to invent numerical schemes for vertical diffusion that are
different than the ones used for ordinary differential equations [8],
nor is it possible to rely on general classes of algorithms for solving
partial differential equations [9]. For this reason some atmospheric
model codes, such as, for instance, the IFS code [7] apply schemes
resembling the Crank–Nicholson scheme, but where the diffusion
coefficients are computed explicitly. Stable solutions can be ob-
tained by applying schemes that are decentered in time [1], i.e.
so-called overimplicit schemes. These schemes need the inversion
of a tridiagonal matrix, which, within the current state of oper-
ational atmospheric models may obfuscate the model code, and
sometimes seriously restricts the introduction of new scientific de-
velopments. For instance, the implementation of a stable surface
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scheme within IFS numerical weather prediction model has been
severely complicated by the algorithm of the vertical turbulent dif-
fusion in the atmospheric part of the model [10].

In this Letter, we propose an alternative numerical finite-
difference scheme for solving the non-linear diffusion equation.
It has been put forth to address some specific needs within the
above-mentioned context of atmospheric modelling. The proposed
scheme in the present Letter computes the spatial derivatives of
the diffusive operator in an explicit manner, but nevertheless treats
the dissipated field partially in an implicit manner. As such it does
not need an inversion of an off-diagonal matrix. We argue that this
provides an alternative solution for the mentioned problems in the
atmospheric models, but we believe that this scheme may be of
interest for a more general class of applications as well.

2. The scheme

This Letter focuses on the following diffusion equation

∂ψ

∂t
= ∂

∂z
ν(ψ)

∂ψ

∂z
, (2.1)

where the diffusion coefficient ν depends on the field ψ , yield-
ing a non-linear differential operator. This equation expresses for
instance the turbulent diffusion in atmospheric models, where the
diffusion coefficients appear as the turbulent exchange coefficients.

A general class of integration schemes for this is
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where j = 1, . . . , N is the index of the grid points z j on a domain
from 0 to L with z0 = zN and with constant grid-point distance
�z = z j+1 − z j . Here ψn

j represents a numerical approximation to
ψ(t0 + n�t, z0 + j�z). The coefficients ν j+ 1

2
are evaluated on the

intermediate points halfway between the grid points j + 1 and j.
The parameter ξ specifies the degree of decentering. The scheme is
second-order accurate in time for ξ = 1/2, being the well-known
Crank–Nicholson scheme [4]. Increasing ξ will increase the stabil-
ity but will decrease its accuracy. In the case ξ > 1, this scheme
is called overimplicit. For a specific application, Eq. (2.2) should
be supplemented with the expressions to compute the coefficients
νn+1

j+ 1
2

as a function of the values ψn+1
j and ψn+1

j+1 .

Except in the purely explicit scheme where ξ = 0, the scheme
in Eq. (2.2) is difficult to solve since one essentially has to solve
non-linear equations. A popular trade off between both schemes
is the frequently used explicit coefficient, decentered field (ECDF)
scheme:
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where the diffusion coefficient ν is taken at time level n instead of
time level n + 1 in Eq. (2.2), which can then be straightforwardly
computed from the available ψn

j . It still has a better stability than
the purely explicit scheme, and the computational cost is reduced
compared to the scheme in Eq. (2.2), being now mainly dominated
by matrix inversions of tridiagonal systems. Cheap algorithms [1,
11] exist whose algorithmic cost scales linearly with the size N of

the domain. In the present Letter, it was decided not to rely on ex-
isting numerical packages [12] but coding the scheme in FORTRAN,
mimicking as much as possible the way it is done in existing atmo-
spheric models. The matrix inversion in Eq. (2.3) has been carried
out by calling the algorithm for the periodic domain as presented
in the appendix of Ref. [1].

The scheme in Eq. (2.3) is popular in atmospheric models such
as the European IFS model [7]. In that case it is utilized with
ξ = 1.5 to avoid non-linear numerical instabilities [5,7]. Also in the
context of atmospheric models, a stability dependent choice of the
coefficient ξ was proposed in Ref. [13] and in Ref. [14], a scheme
has been tested that approximates Eq. (2.2) by an iterative proce-
dure.

In this Letter we introduce a conditionally stable scheme which
shares the same computational cost of the purely explicit scheme.
If ψ is a variable that, for physical reasons can never be zero (for
instance, temperature expressed in Kelvin), we can compute
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the new scheme is then
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where γ is a decentering parameter in the same spirit as ξ in
Eq. (2.3). Note that α has the physical meaning of a local damping
coefficient.

A stability condition on γ is provided by Von Neumann’s
method, i.e. the amplification A defined by ψn+1

j = Aψn
j is com-

puted and the stability condition is that |A| < 1. The analysis is
relevant for the damping case, i.e. ν > 0 is constant. Then scheme
in Eq. (2.5) becomes
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where

β = ν�t
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> 0.

For a monochromatic mode ψn
j = exp(ikz),

ψn
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j . (2.7)

Plugging Eq. (2.7) into scheme (2.6) we get
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It is obvious that the scheme is stable for all values of k and ν
provided that γ � 1

2 .

3. Numerical experiments

The reference test bed that will be considered are the simpli-
fied tests presented in Ref. [5]. In that paper, a simple non-linear
damping equation

dX

dt
= −(

K X P )
X + S, (3.1)

was considered with X(t) a real variable depending on time t only,
K and P respectively represent the degree of stiffness and non-
linearity. The forcing was chosen as,

S(t) = 1 + sin

(
2π

t

20

)
.
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