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Transferring information from observations to models of complex systems may meet impediments when
the number of observations at any observation time is not sufficient. This is especially so when chaotic
behavior is expressed. We show how to use time-delay embedding, familiar from nonlinear dynamics,
to provide the information required to obtain accurate state and parameter estimates. Good estimates
of parameters and unobserved states are necessary for good predictions of the future state of a model
system. This method may be critical in allowing the understanding of prediction in complex systems as
varied as nervous systems and weather prediction where insufficient measurements are typical.

© 2014 Elsevier B.V. All rights reserved.

Testing the consistency of models of nonlinear, complex sys-
tems with observations, then using those models to predict future
events appears in the analysis of a broad spectrum of physical and
biological systems. This includes numerical weather prediction [1],
systems biology [2,3], biomedical engineering [4], chemical engi-
neering [5], biochemistry [6], coastal and estuarine modeling [7,8],
cardiac dynamics [9], and nervous system networks [10,11], among
many others.

For this task one seeks to use information from observed data
to inform the model about its unknown parameters and unob-
served states, enabling one to make testable predictions which can
be used to validate the model. Accurate predictions are the metric
of quality for the physical model. This process of testing and vali-
dating nonlinear models may encounter an impediment when the
systems express chaotic trajectories because sensitivity to initial
conditions may cause the search space to become irregular [12].

To assess how well a model output tracks observations one
may try to achieve synchronization of the data and the model
output [13,14]. Searches for unknown parameters and unobserved
states may be accomplished by perturbing a quality metric to-
ward a synchronized setting. If the synchronization manifold (SM)
– where states of the model coincide with states of the system
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and model output and observations are expected to match – is un-
stable, this search encounters numerous local minima yielding bad
estimates and inaccurate predictions [12]. For the search to suc-
ceed, the unstable directions on the SM must be stabilized by a
sufficient number of measurements Ls [15–17]. If one has fewer
than Ls measurements, the instability of the SM impedes the abil-
ity to make accurate estimates.

Typically, the total number of available measurements L, is
sparse compared with the number of degrees of freedom D of the
model dynamics. For example, in the analysis of a shallow wa-
ter model of geophysical flow [18] it was shown that Ls ≈ 70% of
the dynamical variables in the model, while in operational weather
prediction systems such as the one at the European Centre for
Medium-Range Weather Forecasts only about 107 measurements
for models with 108 or 109 degrees of freedom are typical [19].
This suggests that to achieve Ls > L observations, additional means
are required to ensure that sufficient information passes from ob-
servations to model dynamics.

The idea we explore here is that when one can only make
L < Ls measurements, one can use time-delays of the available
measurements to provide this required additional information. We
report on a technique which uses an observed state variable at a
time t and the time-delays of those measurements as a control to
drive the model to synchronize with the data.

Using time-delay coordinates in the description of nonlinear
and chaotic systems is a well established method for recon-
structing a proxy state space from limited measurements, thereby
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providing a coordinate system to analyze nonlinear aspects of
the system [20–25]. While our idea of using information in time-
delayed measurements is similar to standard time-delay phase
space reconstruction, its role here is quite distinct. Our results sug-
gest that time-delay coordinates are equivalent to the additional
measurements that are required to stabilize the SM. This permits
accurate state and parameter estimation, and from that, accurate
prediction.

We work with a set of L-dimensional measurements y�(tn), � =
1,2, . . . , L, that are made at each observation time {t0, t1, . . . , tn,

. . . , tN = T } within an observation window [t0, T ]. The physical
model developed to describe this system has D state variables
xa(t), a = 1,2, . . . , D , which satisfy the deterministic ordinary dif-
ferential equations

dxa(t)

dt
= Fa

(
x(t),p

)
, (1)

with fixed parameters p. The index a collects the vector label of
state variables and any discretized spatial coordinates for underly-
ing dynamics of fields satisfying physical partial differential equa-
tions. In general there are model errors that may be represented
as stochastic contributions to these deterministic dynamics.

The output of the model x(t) is related to the observations
y�(t) by L observation functions h�(x(t)), and if synchronization
is achieved then y�(t) ≈ h�(x(t)) and a high quality estimation of
parameters and unobserved states is possible, and prediction will
likely be accurate.

We show that this goal is achieved in two examples of chaotic
dynamical systems with sparse observations: (i) the Lorenz ’96
model [26] with D = 20 and the same forcing in each dynamical
degree-of-freedom, and (ii) the Lorenz ’96 model with D = 10 and
different forcing presented to each dynamical variable. This model
is chosen because it has been shown that Ls is proportional to D ,
which may be chosen freely [15]. This makes Lorenz ’96 an ex-
cellent testing ground for investigating the effects of insufficient
measurements. In both examples we view the fixed parameters
as extended state variables with trivial dynamics dp/dt = 0, and
we presume that among the many state variables, only one is ob-
served; we call this measured variable y1(t) and associate it with
x1(t) = h(x(t)), so L = 1 < Ls . Using this observed quantity along
with its time-delays, this technique allows us to accurately esti-
mate the unobserved state variables as well as all of the unknown
parameters.

In a subsequent paper, we will report on the successful applica-
tion of this method to a ring of three coupled classical Lorenz ’63
models [27] and to the four-dimensional Rössler model of ‘hyper-
chaos’ [28]. These investigations will include the effects of additive
noise in the measurement on the viability of the method. In this
paper however, we focus solely on the Lorenz ’96 results.

We generate the data from a known model, so we are perform-
ing ‘twin experiments’, yet we proceed as if the only information
available to us is the time series of measurements y1(t). We estab-
lish synchronization on the SM by comparing the D M -dimensional
time-delay data vector Yk(t) = {y1(t + (k − 1)τ )}, k = 1,2, . . . , D M

with the D M -dimensional time-delay model vector Sk(t) = {x1(t +
(k − 1)τ )}, k = 1,2, . . . , D M , through monitoring the synchroniza-
tion error

SE2
s (t) = 1

D M

D M∑
k=1

(
y1

(
t + (k − 1)τ

) − x1
(
t + (k − 1)τ

))2
. (2)

The quality of the estimation is then evaluated by the prediction of
time series measurements for times greater than the observation
period T = tN . Although in a twin experiment we may examine
the quality of the method for estimating unobserved states and
unknown parameters, here we restrict our evaluation of estimates

and predictions to observed quantities alone – in this case x1(t)
as that mimics experimental settings. The luxury of comparing the
unobserved state values is not available in actual experiments.

From the model output time series x1(t) we augment the di-
mension from one to D M > 1 by considering the D M -dimensional
time-delay measurement vector constructed from the physical
state variables x as

S
(
x(t)

) = {
x1(t), x1(t + τ ), . . . , x1

(
t + (D M − 1)τ

)}
, (3)

where τ is a suitably chosen time-delay, and S(x) denotes a map
from the physical space to a delay embedding space which is in
general different from delay embedding space used for state space
reconstruction. We are using the phrase “time-delay” in a general
sense here, but use a time advanced embedding for computa-
tional ease when computing the Jacobian of the delay embedding
map (7). The data y1(t) are used to create a D M -dimensional data
vector

Y(t) = {
y1(t), y1(t + τ ), . . . , y1

(
t + (D M − 1)τ

)}
.

In this way, the model output is compared to the observed data
by asking when Y(t) ≈ S(t) through the evaluation of the synchro-
nization error (2).

One way to proceed is to form the map from physical space
x to time-delay space S via the construction (3). By casting the
overall dynamics (1) into S space, one can use the full statistical
physics path integral formulation of the problem in S space [17].

We focus here on a different approach, in which we use the
equations of motion to advance the state x in physical space while
incorporating the information from the observations via Y appro-
priately coupled into the x dynamics. Although the forward map
S(·) is explicit in Eq. (3), the global inverse map S−1(·) from
D M -dimensional space to D-dimensional physical space is not ex-
plicitly given in general. However, we can use the local version of
the forward map which involves the D M × D Jacobian matrix ∂ S

∂x (t)

and its pseudo-inverse ∂x
∂ S (t) as a local inverse map.

To achieve synchronization, we proceed through the observa-
tion window using the equations of motion in physical space x
to advance the state between observation times tn . At each of the
tn we introduce a local control term in time-delay space of the
form gnδ(t − tn)(Y(t) − S(t)), where gn denotes a coupling con-
stant at each tn , and δ(·) is a delta function switching the coupling
on at measurement times. Using the inverse of the delay embed-
ding map (3) we express this equation of motion in physical space
as follows:

dxa(t)

dt
= Fa

(
x(t)

) +
N∑

n=0

gnδ(t − tn)S−1
a

(
Y(t) − S(t)

)
, (4)

over the N + 1 observations in the data assimilation window
[t0, tN = T ].

For small deviations a Taylor expansion of the control term re-
sults in the following set of ODEs

dxa(t)

dt
= Fa

(
x(t)

)

+
N∑

n=0

gnδ(t − tn)

D M∑
k=1

∂xa

∂ Sk
(t)

(
Yk(t) − Sk(t)

)
. (5)

At times tn , the Jacobian matrix ∂x
∂ S (t) = { ∂xa

∂ Sk
(t)} of S−1 couples the

information from the time-delay data into all dynamical variables
of the model [29,30].

The coupling term in the differential equation drives the solu-
tion x(t), represented through S(x(t)), to the observations Y(t) in
a stable manner when gn is sufficiently large, and when D M pro-
vides enough information about the data waveform to the model.
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