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Step-like features on caloric effects of graphenes
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We considered a graphene nano-ribbon with a longitudinal electric field (along x direction) and a
transversal magnetic field (along z direction), and then observe (i) the electrocaloric effect ruled by an
applied magnetic field and (ii) the magnetocaloric effect ruled by an applied electric field. We focused
our attention to the limit of low temperatures, and then observed interesting step-like features. For each
filled Landau level n, created by the applied magnetic field, both caloric effects increase proportionally to
n + 1/2; and this step measures either important graphene properties (like Fermi velocity) or quantum
fundamental quantities (like Planck constant and magnetic flux quantum).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Caloric effects, like magneto (MCE) and electro (ECE), are in-
trinsic and exciting properties of magnetic and electric materials,
in which they are able to exchange heat (�Q = T �S) with a
thermal reservoir, under a field change (�B or �E). This amount
of heat is directly related to the entropy change �S(T ,�X) =
S(T , X) − S(T ,0), usually used to characterize the caloric proper-
ties of materials. X is a field – either magnetic B or electric E; or
even pressure p, considering the barocaloric effect [1]. The cooling
devices based on these effects are promising candidates to substi-
tute, in a near feature, the common devices, i.e., those based on
compression–expansion of freon-like gases (for instance, air condi-
tioners and household refrigerators). This probable scenario arises
since cooling devices fit in a clean, safe and sustainable technol-
ogy; where these systems do not use any noxious gases to the
ozone layer and, in addition, have greater efficiency of cooling
power and lower energy consumption when compared with the
traditional devices [2]. However, applications of these effects are
not limited to room temperature, and the best example is the adi-
abatic demagnetization refrigerator, that can reach mK scale [3].

Thus, it is simple to understand why the scientific community
has never explored materials until their limits and never observed
step-like features on caloric effects, since most of the research
world wide has been devoted to practical purposes on magnetic-,
electric- and baro-refrigeration [4–7]; with a huge amount of ex-
perimental work, in what concerns materials science, and, on the
other hand, only a few mean-field theoretical models [8]. In addi-
tion, these caloric effects are maximized around the critical tem-
perature of the materials and therefore ferro (magnetic and elec-
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tric) materials are the most focused by the community [2,9–12],
as well as those with other kind of ordering and correlations, like
magneto/electric-structural dependencies [2].

In opposition to this tendency, recently, diamagnetic materials
received due attention never received before [13–15], and an os-
cillatory behavior, due to the crossing of the Landau levels through
the Fermi level [16], was predicted, in analogy to the de Haas–
van Alphen effect. More recently, we extended our analysis to a
graphene (a planar sheet of carbon atoms packed in a honey-
comb lattice), with further investigation on the oscillating mag-
netocaloric [17] and electrocaloric [18] effects on this material.
Remarkable, these oscillations occur at c.a. 1 K for non-relativistic
3D diamagnetic material [13–15], while for graphenes it occurs at
c.a. 100 K, due to its huge Fermi velocity [17]. Generally speak-
ing, anomalous phenomena on graphenes are ruled by the re-
markable relativistic-like spectrum of electrons and holes, and one
interesting effect experimentally verified is the abnormality of the
QHE [19–22] – with a quantization condition shifted by a half-
integer.

Another important feature of graphene is the de Haas–van
Alphen effect (dHvA), in which the magnetization oscillates peri-
odically in a sawtooth pattern as a function of reciprocal magnetic
field 1/B , with period given by [23–25]:
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Above, Bn+1 and Bn are the magnetic induction intensity cor-
responding to two neighboring Landau levels n which cross the
Fermi level in succession; and φ0 = π h̄/e = 2.06 × 10−15 T m2 is
the magnetic flux quantum.

Thus, the present effort further analysis the caloric effect on
graphenes: observes and explores the step-like features on the en-
tropy change.
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2. Brief survey on caloric effects

Electronic properties of graphenes are quite different from
those of non-relativistic 2D (and even 3D) diamagnetic materials,
since electrons in graphene have zero effective mass and these be-
have like relativistic particles, described by the Dirac equation [26].
The energy spectra for a nano-ribbon graphene sheet on x–y plan
with �E = (−E,0,0) and �B = (0,0, B), i.e., electric field along the
graphene plan and magnetic field perpendicular to graphene plan,
is [24,25,27]:

En = h̄ω′√n + h̄v F βky (2)

where n = 0,1,2, . . . represents the Landau level index,

h̄ω′ = √
2h̄eB v F

(
1 − β2)3/4

(3)

and

β = E

v F B
< 1 (4)

Above, ky = 2π l/L y (l = 0,±1,±2, . . .) corresponds to the transla-
tional symmetry along the y axis and is related to the size (L y)
of the graphene along y direction. Finally, v F = 106 m/s stands for
the Fermi velocity.

This system was explored considering the magnetocaloric effect
with a longitudinal applied electric field, and the entropy change
is [28]:

�S(T ,�B, E) = Scos(T , B, E) + Sper(T , B, E) (5)

More recently, the electrocaloric effect with a transversal applied
magnetic field was also explored and, similarly to above, the en-
tropy change is [18]:

�S(T , B,�E) = Scos(T , B, E) + Sper(T , B, E) − Scos(T , B,0) (6)

Note we are describing the ECE in a general context, as an en-
tropy change due to an electric field change, even graphene being
a conductor. This entropy change is then related to the change on
the Landau structure due to an applied electric field. In Eqs. (5)
and (6), those terms are (i) an oscillatory contribution to the en-
tropy [28]:

Scos(T , B, E) = 2kB
N0

m

(
1 − β2)3/4

cos(πm)T (x) (7)

and, (ii) a periodic one, due to the additional energy induced by
the electric field on the level partially occupied [28]:

Sper(T , B, E) = 2π2kB Lxβ Am
N0

m

√
N0πT (x) (8)

Above,

T (x) = xL(x)

sinh(x)
and L(x) = coth(x) − 1

x
(9)

is the Langevin function. In addition,

x = φ0

B

kB T

ṽ F

1

(1 − β2)3/4
(10)

N0 = 1016 m−2 is the density of charge carriers [29,30],

m = N0
φ0

B
(11)

and ṽ F = h̄v F /2π
√

N0π = 9.43 × 10−38 J m2. Note both quantities,
m and x, are dimensionless. Finally,

Am = [
m2 − 2m(2σ + 1) + 4σ(σ + 1)

]
(12)

where σ = �m/2� (the � � symbol mean the floor function, i.e.,
the integer part of the argument). The periodic behavior of Am can
be seen in Ref. [28]. It is important to note that, for odd values
of m, this function is −1 and, on the other hand, it assumes 0 for
even values of m. For further understanding on the above contri-
butions to the magneto- and electro-caloric effects of graphenes,
see Refs. [17,18,28].

3. Step-like behavior

To observe step-like features on those caloric effects, two ap-
proximations must be done: (i) β � 1 – retaining only linear con-
tributions on β . For practical purposes, considering E = 106 V/m
then m < 20. (ii) x → 0 and then T (x) → x/3. It means T �
N0 ṽ F /mkB ≈ 10 K, considering m = 10.

3.1. Electrocaloric effect

It is simple to observe that the entropy change of Eq. (6), on the
limits imposed before, resumes as �S(T , B,�E) = Sper(T , B, E),
i.e., depends only on the additional energy induced by the elec-
tric field on the level partly occupied. Thus, the entropy change
can be re-written as:

�S(T , B,�E) = Λ

2
mAm (13)

where

Λ =
(
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1
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)
(14)

and V x = E Lx is the voltage applied along the x direction of the
graphene. Considering Lx = 10−8 m (see Ref. [25]), the voltage
applied is of the order of 10 mV. Note the first parenthesis of
the above equation depends only on the external parameters and
constants; the second parenthesis depends on intrinsic graphene
properties and, finally, the last one depends on quantum funda-
mental quantities.

The electrocaloric effect on Eq. (13) is proportional to Am ,
that vanishes for even values of m and assumes −1 for odd val-
ues of m. It has a consequence on the caloric effect, as can be
seen on Fig. 1(top): a periodic behavior is found and the value
of �S(T , B,�E) at each odd values of m, i.e., m = 2n + 1 (where
n = 0,1,2,3, . . .) assumes

�S(T , Bn,�E) = −Λ

(
n + 1

2

)
(15)

where

Bn = N0φ0

2n + 1
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(
1

B

)
= 2

φ0N0
(16)

The above �(1/B) leads to the same result of Eq. (1) and there-
fore we conclude that n (on Eq. (15)) is the Landau level index. In
other words, one period of oscillation of the caloric effect is related
to one Landau level. The �S(T , Bn,�E) difference between con-
secutive n values, i.e., |�S| = |�S(T , Bn+1,�E) − �S(T , Bn,�E)|
is Λ = 2.97 × 10−3 J/kg K, considering T = 1 K.

From the experimental point of view, these results are able to
measure either fundamental quantities (magnetic flux quantum φ0
and Planck constant h̄) or important graphene quantities (Fermi
velocity v F and density of charge carries N0). Connecting those
peaks with a straight line (it is easy to see that it is −ΛN0φ0/2B),
the abscissa axis measures, from the period of the oscillations, ei-
ther N0 or φ0, depending if the abscissa is expressed as φ0/B
or N0/B , respectively. The ordinate axis measures Λ, since the
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