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Abstract

A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are
taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a
“dressed” potential energy, accounting for dust charge polarization, are derived and compared. The dispersion relation for both longitudinal and
transverse wave propagation in an arbitrary direction is derived. A comparison to analytical and experimental results reported previously is carried
out.
© 2006 Elsevier B.V. All rights reserved.
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Dusty plasma crystals represent strongly coupled dust configurations, typically occurring in plasma discharge experiments, due
to the strong electrostatic interaction between massive, heavily charged, micron-sized dust particulates (dust grains) injected into the
plasma [1,2]. Such dust crystals, which most often bear a two-dimensional (2D) hexagonal structure [2], support a variety of linear
modes [1–5]. A theoretical treatment of longitudinal and transverse modes in Yukawa crystals including the effects of damping are
investigated by Wang et al. [6]. Their theoretical predictions are in agreement with experiments. A theoretical analysis, supported by
molecular dynamics simulation, of the wave dispersion relation in a 2D dust crystal in the presence of a constant magnetic field, was
presented by Uchida et al. [7]. Crystal formation and dynamics have been studied in various experiments [2,8–14], where particles
were essentially created by injecting artificial micro-spheres, which subsequently acquire a high (negative, usually) electron charge
via inherent dynamic charging mechanisms.

Recently, Duan et al. [15] have investigated longitudinal and transverse dust grain vibrations in a 2D hexagonal lattice by
considering screened Coulomb interactions (Debye–Hückel or Yukawa system) between charged dust particles, i.e., U(r) =
Q2 exp(−r/λD)/(4πε0r), where r is the distance between two dust particles and λD is the Debye radius (ε0 denotes the elec-
tric susceptibility of vacuum). Taking into account polarization due to the sheath region (near the grain surface) leads to a strong
modification of the charge cloud (of opposite electric charge sign) surrounding the particles. Such a “dressing” effect in the particle
interactions may even result in an attractive force between equal-sign charged dust particles [16–18].

In this Letter, we have investigated the dynamics of a two-dimensional hexagonal crystal, in search of a dispersion relation
for longitudinal and transverse dust lattice waves (DLWs). The principal aspects of harmonic (linear) small-amplitude vibra-
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Fig. 1. The nearest neighbors around the particle (n,m) in a particle hexagonal lattice.

tional motion are investigated, by considering a “dressed” Debye-type interaction potential energy, namely, U(r) = Q2(1 −
r/2λD) exp(−r/λD)/(4πε0r).

Let us consider a two-dimensional (2D) hexagonal crystal (assumed infinite, for simplicity) consisting of negative dust grains
(of constant charge Q and mass M , for simplicity), located at equidistant sites a. For the analysis of the waves in this 2D crystalline
monolayer, we use the so-called “particle string” model, allowing for two-dimensional motion, in the longitudinal (horizontal,
along the x axis) and transverse (vertical) directions, the corresponding discrete ordering dust grain being denoted by indices n

and m, respectively. Fig. 1 shows the nearest six particles with labels (n + 1,m), (n − 1,m), (n + 1/2,m + √
3/2), (n − 1/2,m +√

3/2), (n + 1/2,m − √
3/2), and (n − 1/2,m − √

3/2). Let the (n,m)th particle location define the origin of the plane; then the
positions of the first elementary cell particles at equilibrium are (a,0), (−a,0), (a/2,

√
3a/2), (−a/2,

√
3a/2), (a/2,−√

3a/2)

and (−a/2,−√
3a/2). However, if the particles are not at their equilibrium positions, we then define the six lengths l1, l2, l3, l4, l5,

and l6 to represent the distances from particle (n,m) to the nearest particles, respectively,

(1)l1 =
√
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√
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√
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)2
,

(4)l4 =
√
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3/2 + un,m)2 + (√
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)2
,
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,

(6)l6 =
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3/2 + un,m)2 + (√
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)2
,

where u and v are the particle displacements from their equilibrium positions in the x and y directions, respectively. The electrostatic
binary interaction force F(r) exerted onto two dust grains situated at a distance r is derived from a potential function U(r), viz.
F(r) = −∂U(r)/∂r . We may expand the potential energy around equilibrium at r = a, viz.

(7)U(r) = U(a) + (r − a)
∂U

∂r

∣∣∣∣
r=a

+ 1

2
(r − a)2 ∂2U

∂r2

∣∣∣∣
r=a

+ · · · .

By defining the “spring” constant G = (∂2U/∂r2)|r=a , and setting the potential energy at equilibrium to zero, we have

(8)U(r) ∼= 1

2
G(r − a)2.

We have calculated G, for a Yukawa system U1(r) on one hand, and for a “dressed” potential energy U2(r), on the other; the
corresponding expressions read

(9)G1 = 2Q2

4πε0λ
3
D

1 + κ + κ2/2

κ3
e−κ ,

(10)G2 = 2Q2

4πε0λ
3
D

1 + κ + κ2/2 − κ3/4

κ3
e−κ ,

respectively, where we have defined the (dimensionless) lattice parameter κ = a/λD. Fig. 2 shows the harmonic potential energy,
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