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Abstract

A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are
taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a
“dressed” potential energy, accounting for dust charge polarization, are derived and compared. The dispersion relation for both longitudinal and
transverse wave propagation in an arbitrary direction is derived. A comparison to analytical and experimental results reported previously is carried
out.
© 2006 Elsevier B.V. All rights reserved.
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Dusty plasma crystals represent strongly coupled dust configurations, typically occurring in plasma discharge experiments, due
to the strong electrostatic interaction between massive, heavily charged, micron-sized dust particulates (dust grains) injected into the
plasma [1,2]. Such dust crystals, which most often bear a two-dimensional (2D) hexagonal structure [2], support a variety of linear
modes [1-5]. A theoretical treatment of longitudinal and transverse modes in Yukawa crystals including the effects of damping are
investigated by Wang et al. [6]. Their theoretical predictions are in agreement with experiments. A theoretical analysis, supported by
molecular dynamics simulation, of the wave dispersion relation in a 2D dust crystal in the presence of a constant magnetic field, was
presented by Uchida et al. [7]. Crystal formation and dynamics have been studied in various experiments [2,8—14], where particles
were essentially created by injecting artificial micro-spheres, which subsequently acquire a high (negative, usually) electron charge
via inherent dynamic charging mechanisms.

Recently, Duan et al. [15] have investigated longitudinal and transverse dust grain vibrations in a 2D hexagonal lattice by
considering screened Coulomb interactions (Debye—Hiickel or Yukawa system) between charged dust particles, i.e., U(r) =
02 exp(—r/Ap)/(4megr), where r is the distance between two dust particles and Ap is the Debye radius (¢o denotes the elec-
tric susceptibility of vacuum). Taking into account polarization due to the sheath region (near the grain surface) leads to a strong
modification of the charge cloud (of opposite electric charge sign) surrounding the particles. Such a “dressing” effect in the particle
interactions may even result in an attractive force between equal-sign charged dust particles [16—18].

In this Letter, we have investigated the dynamics of a two-dimensional hexagonal crystal, in search of a dispersion relation
for longitudinal and transverse dust lattice waves (DLWs). The principal aspects of harmonic (linear) small-amplitude vibra-
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Fig. 1. The nearest neighbors around the particle (n, m) in a particle hexagonal lattice.

tional motion are investigated, by considering a “dressed” Debye-type interaction potential energy, namely, U(r) = Q%(1 —
r/2ip) exp(—r/Ap)/(4meor).

Let us consider a two-dimensional (2D) hexagonal crystal (assumed infinite, for simplicity) consisting of negative dust grains
(of constant charge Q and mass M, for simplicity), located at equidistant sites a. For the analysis of the waves in this 2D crystalline
monolayer, we use the so-called “particle string” model, allowing for two-dimensional motion, in the longitudinal (horizontal,
along the x axis) and transverse (vertical) directions, the corresponding discrete ordering dust grain being denoted by indices n
and m, respectively. Fig. 1 shows the nearest six particles with labels (n +1,m), (n —1,m), (n +1/2,m + «/5/2), n—1/2,m+
V3/2), (n+1/2,m —~/3/2), and (n — 1/2,m — +/3/2). Let the (n, m)th particle location define the origin of the plane; then the
positions of the first elementary cell particles at equilibrium are (a,0), (—a, 0), (a/2,/3a/2), (—a/2,~/3a/2), (a/2, —/3a/2)
and (—a/2, —3a /2). However, if the particles are not at their equilibrium positions, we then define the six lengths [y, I, I3, l4, I5,
and /¢ to represent the distances from particle (r, m) to the nearest particles, respectively,
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where u and v are the particle displacements from their equilibrium positions in the x and y directions, respectively. The electrostatic
binary interaction force F(r) exerted onto two dust grains situated at a distance r is derived from a potential function U (r), viz.

F(r)y=—0U(r)/dr. We may expand the potential energy around equilibrium at r = a, viz.
v =v@+e -0 +le-a?ZY 4 ™
ry=U(a r—a)— ~(r—a)y—
or |,—, 2 ar?|._,

By defining the “spring” constant G = (82U /3r?)|,—q4, and setting the potential energy at equilibrium to zero, we have
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We have calculated G, for a Yukawa system Uj(r) on one hand, and for a “dressed” potential energy U>(r), on the other; the
corresponding expressions read
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respectively, where we have defined the (dimensionless) lattice parameter k = a/Ap. Fig. 2 shows the harmonic potential energy,
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