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We have examined the validity of the time-dependent variational approximation (TDVA) to the Gaussian
wavepacket method (GWM) for quantum double-well (DW) systems, by using the quasi-exact spectral
method (SM). Comparisons between results of wavefunctions, averages of position and momentum, the
auto-correlation function, and an uncertainty product calculated by SM and TDVA have been made. It
has been shown that a given initial Gaussian wavepacket in SM is quickly deformed at t > 0 where a
wavepacket cannot be expressed by a single Gaussian, and that assumptions on averages of higher-order
fluctuations in TDVA are not justified. These results cast some doubt on an application of TDVA to DW
systems. Gaussian wavepacket dynamics in anharmonic potential systems is studied also.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dynamical properties of nonrelativistic quantum systems may
be described by the Schrödinger equation [1], in which the time-
dependent wavefunction Ψ (x, t) for the one-dimensional system
with the potential U (x) is described by

ih̄
∂Ψ (x, t)

∂t
= HΨ (x, t) =

[
− h̄2

2m

∂2

∂x2
+ U (x)

]
Ψ (x, t). (1)

It is generally difficult to obtain exact solutions of the Schrödinger
equation which are available only for limited cases like a harmonic
oscillator (HO) system. For general quantum systems, various ap-
proaches such as perturbation and spectral methods have been
developed to obtain approximate solutions [1]. From Eq. (1), we
may derive equations of motion for 〈x〉 and 〈p〉 expressed by

d〈x〉
dt

= 〈p〉
m

,
d〈p〉

dt
= −

〈
∂U (x)

∂x

〉
, (2)

where the bracket 〈·〉 denotes the expectation value. Although
equations of motion given by Eq. (2) are closed within 〈x〉 and 〈p〉
for a HO system, they generally yield equations of motion including
higher-order fluctuations such as 〈δx2〉, 〈δp2〉 and 〈δxδp + δpδx〉
where δx = x − 〈x〉 and δp = p − 〈p〉. It is necessary to develop
an approximate method to close or truncate a hierarchical chain of
equations of motion.
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The Gaussian wavepacket method (GWM) is one of such meth-
ods whose main aim is a semi-classical description of quantum
systems (for a recent review on GWM, see Ref. [2]). If the wave-
function is Gaussian at t = 0 in a HO system, it remains at all t > 0.
Heller [3] proposed that even for more realistic potentials, we may
adopt a (thawed) Gaussian wavepacket given by

ΨH (x, t) = exp

[
i

h̄

[
A
(
x − 〈x〉)2 + 〈p〉(x − 〈x〉) + γ

]]
, (3)

where A and γ are time-dependent complex parameters. Heller [3]
derived equations of motion for 〈x〉, 〈p〉, A and γ , employing an
assumption that the potential expanded in the Taylor series at
x = 〈x〉 may be truncated by

U (x) ∼= U (0)
(〈x〉) + U (1)

(〈x〉)(x − 〈x〉)
+ 1

2
U (2)

(〈x〉)(x − 〈x〉)2
, (4)

where U (k)(x) signifies the kth derivative of U (x). The concept of
the Gaussian wavepacket has been adopted in many fields [2]. Dy-
namics is well described by GWM for a HO system where motions
of fluctuations are separated from those of 〈x〉 and 〈p〉, leading
to the uncertainty relation: 〈δx2〉〈δp2〉 � h̄2/4. Various types of
variants of GWM such as the frozen [4] and generalized Gaussian
wavepacket methods [5] have been proposed [2]. Among them,
we pay our attention into the time-dependent variational approxi-
mation (TDVA) which employs the normalized squeezed coherent-
state Gaussian wavepacket given by [6–10]
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ΨG(x, t) = 1

(2πμ)1/4

× exp

[
− (1 − iα)

4μ

(
x − 〈x〉)2 + i

〈p〉(x − 〈x〉)
h̄

]
, (5)

μ and α being time-dependent parameters. For the introduced
squeezed coherent state, equations of motion given by Eq. (2) are
closed within 〈x〉, 〈p〉, 〈δx2〉 and 〈δxδp +δpδx〉 (see Eqs. (33)–(36)).
A comparison between Heller’s GWM and TDVA is made in
Refs. [9,10].

There have been many studies on GWM which is applied to
HO, anharmonic oscillator (AO) and Morse potentials [2]. How-
ever, GWM has some difficulty when applied to a potential U (x)
including terms of xn with n > 2. Although it has been claimed
that GWM yields a fairly good result for AO systems [6], we won-
der whether it actually works for double-well (DW) systems. DW
potential models have been employed in a wide range of fields in-
cluding physics, chemistry and biology (for a recent review on DW
systems, see Ref. [11]). Lin and Ballentine [12], and Utermann, Dit-
trich and Hänggi [13] studied semi-classical properties of DW sys-
tems subjected to periodic external forces, calculating the Husimi
function [14]. Their calculations showed a chaotic behavior in ac-
cordance with classical driven DW systems. Igarashi and Yamada
[15] studied a coherent oscillation and decoherence induced by ap-
plied polychromatic forces in quantum DW system. By using TDVA,
Pattanayak and Schieve [8] pointed out that a chaos is induced by
quantum noise in DW systems without external forces although
classical counterparts are regular. This is in contrast to the usual
expectation that quantum effects suppress classical chaos. Chaotic-
like behavior was reported in a square DW system obtained by the
exact calculation [16]. Quantum chaos pointed out in Ref. [8] is
still controversial [17–22].

Quite recently, Hasegawa has studied effects of the asymme-
try on the specific heat [23] and tunneling [24] in the asymmetric
DW systems, by using the spectral method (SM) in which expan-
sion coefficients are evaluated for energy matrix elements with a
finite size of Nm = 30 (Eqs. (16) and (17)). Model calculations in
Refs. [23,24] have pointed out intrigue phenomena which are in
contrast with earlier relevant studies. It is worthwhile to exam-
ine the validity of TDVA applied to DW systems with the use of
quasi-exact SM [23,24], which is the purpose of the present paper.
Such a study has not been reported as far as we are aware of. It is
important to clarify the significance of TDVA for DW systems.

The paper is organized as follows. In Section 2, we mention the
calculation method employed in our study. We consider quantum
systems described by the symmetric DW (SDW) model. In solving
dynamics of a Gaussian wavepacket in the SDW, we have adopted
the two methods: SM and TDVA. In Section 3, we report calculated
results of the magnitude of wavefunction (|Ψ (x, t)|2), an expec-
tation value of x (〈x〉), the auto-correlation function (C(t)) and
the uncertainty product (〈δx2〉〈δp2〉). In Section 4 we apply our
method also to an AO model. Section 5 is devoted to our conclu-
sion.

2. The adopted method

2.1. Symmetrical double-well potential

We consider a DW system whose Hamiltonian is given by
[23,24]

H = p2

2m
+ U (x) = H0 + V (x), (6)

where

Fig. 1. (Color online.) The symmetric DW potential (solid curve) with xs = 2
√

2 and
� = 1.0 in Eq. (7), dashed curves expressing eigenvalues of Eν (ν = 0–4).

U (x) = C
(
x2 − x2

s

)2
(

C = mω2

8x2
s

)
, (7)

H0 = p2

2m
+ U0(x), (8)

U0(x) = mω2x2

2
, (9)

V (x) = U (x) − U0(x). (10)

Here m, x and p express mass, position and momentum, respec-
tively, of a particle, U (x) stands for the DW potential, and H0
is the HO Hamiltonian with the oscillator frequency ω. The SDW
potential U (x) has stable minima at x = ±xs and an unstable max-
imum at xu = 0 with the potential barrier of � = U (0)− U (±xs) =
mω2x2

s /8. A prefactor of C in Eq. (7) is chosen such that the
DW potential U (x) has the same curvature at the minima as the
HO potential U0(x): U ′′(±xs) = U ′′

0(0) = 1.0. Fig. 1 expresses the
adopted quartic DW potential U (x) with xs = 2

√
2 and � = 1.0 in

Eq. (7). Eigenfunction and eigenvalue for H0 are given by

φn(x) = 1√
2nn!

(
mω

π h̄

)1/4

exp

(
−mωx2

2h̄

)
Hn

(√
mω

h̄
x

)
, (11)

E0n =
(

n + 1

2

)
h̄ω (n = 0,1,2, . . .), (12)

where Hn(x) stands for the nth Hermite polynomial.

2.2. Spectral method

Various approximate analytical and numerical methods have
been proposed to solve the Schrödinger equation given by Eq. (1)
[1]. Assuming Ψ (x, t) = Ψ (x) e−iEt/h̄ , we first solve the steady-state
Schrödinger equation, HΨ (x) = EΨ (x), with the eigenvalue E . The
stationary wavefunction Ψ (x) is expanded in terms of φn(x)

Ψ (x) =
Nm∑

n=0

cnφn(x), (13)

leading to the secular equation

Ecn =
Nm∑

k=0

Hnkck, (14)

with

Hnk = E0n δn,k +
∞∫

−∞
φn(x)∗V (x)φk(x)dx, (15)

where Nm is the maximum quantum number.
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