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Understanding hidden attractors, whose basins of attraction do not contain the neighborhood of
equilibrium of the system, are important in many physical applications. We observe riddled-like
complicated basins of coexisting hidden attractors both in coupled and uncoupled systems. Amplitude
death is observed in coupled hidden attractors with no fixed point using nonlinear interaction. A new
route to amplitude death is observed in time-delay coupled hidden attractors. Numerical results are
presented for systems with no or one stable fixed point. The applications are highlighted.
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1. Introduction

Attractors are termed as self-excited attractors if their basins
intersect with the neighborhood of equilibria present in the sys-
tem. Such attractors in various systems, e.g. Lorenz, Rossler, Chua,
etc., have been studied in detail [1–3]. Very recently, a new type
of attractors called hidden attractors, that don’t intersect with the
neighborhood of any equilibrium, have been reported [4–6]. Due
to absence of unstable equilibrium in its neighborhood these type
of attractors are less traceable. Therefore, it is also difficult to un-
derstand their characteristic behavior [4–11]. Even to locate the at-
tractors in a given system requires proper search methods [8–11].
In recent years various attempts have been made to understand
such attractors. Various physical as well as mathematical models
have been explored with possibility of finding hidden oscillating
attractors in systems having no [12–15], one [12,16], and more
[17–20] stable fixed point. Understanding the properties of such
attractors are important as they are observed in various systems
e.g. Chua, Electrical Machines, drilling system, etc. [4,5,7,12,19]

Systems with coexisting attractors have a complex dynamical
behavior due to the extreme sensitivity towards initial conditions,
system parameter, and noise [1,21,22]. The presence of coexist-
ing attractors in a system creates a dilemma in deciding the final
asymptotic state of the system. In many practical situations, partic-
ularly from an engineering point of view, understanding the struc-
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tures of the basins of such attractors are essential [23,24]. In this
paper we study coexisting hidden attractors which have riddled-
like complicated basins.

Natural systems are rarely isolated, and hence the interaction
between such systems have been extensively studied for self-
excited systems, both from theoretical and experimental points of
view. Several interesting new phenomena have been observed in
such interacting systems [3,25,26]. One such phenomena, ampli-
tude death (AD) [27], is important because it can also occur in
coupled nonlinear oscillators. It occurs when interaction causes the
fixed points to become stable and attracting. Since no fixed point
or a set of stable fixed points exist in systems with hidden at-
tractors, understanding the nature and consequences of coupling
in such systems is equally important. For a hidden attractor hav-
ing no-stable point, AD can be induced only by creating new fixed
points in the coupled system. However, for the case of hidden
attractors having stable fixed points, AD, can be observed using
appropriate interactions. In this paper we show that AD can be
achieved using nonlinear interaction in systems having no-fixed
points while in systems having stable fixed points this can be
achieved using time-delay interaction. A new route to AD is ob-
served for the case of stable fixed point systems that is very dif-
ferent from existing routes to AD in self-excited attractors [27].

This paper is organized as follows. In Section 2 we study indi-
vidual systems with no or one stable fixed point. The riddled-like
basin for coexisting hidden attractors are presented in this sec-
tion. The phenomena of AD due to nonlinear and time-delayed
interactions in coupled hidden attractors are also demonstrated. In
Section 3 summary, conclusions are presented.
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Fig. 1. (Color online.) The trajectories of (a) chaotic and (b) periodic attractors,
and (c) the corresponding basins (chaotic – black and periodic – grey colors) at
α = −0.001. (d) The fractions of initial conditions which go to chaotic (Fc , solid
black line) and periodic (F p , dashed red line) attractors as a function of parame-
ter α. (e) The width of the strips of period and chaotic basins as a function starting
positions xs of the strips, along the marked arrow in (c).

2. Results and discussions

In this section, we study a particular class of systems having
either no or one fixed point. However, similar results are observed
in systems having two or more stable fixed points as well [28].

2.1. System with no fixed point

We first consider a system that has no fixed point and provides
hidden attractors [12],

ẋ = y,

ẏ = z,

ż = −y + 3y2 − x2 − xz + α. (1)

This system doesn’t have any fixed point for parameter α < 0
[12]. This system has been studied earlier where the existence of a
single chaotic attractor has been demonstrated [12]. Such a typical
chaotic attractor is shown in Fig. 1(a) for α = −0.001. Apart from

Fig. 2. (Color online.) (a) The schematic phase diagram in parameters ε and β of
Eq. (2). (b) The transient trajectory for targeted fixed point solution in AD region
of (a).

this attractor, a new periodic attractor is also observed at the same
parameter as shown in Fig. 1(b). Because there is no fixed point
in this system at this parameter, these coexisting attractors are
termed as hidden ones. Since these coexisting attractors depend
on initial conditions, we explore their corresponding basins. These
are shown in Fig. 1(c). The dark and brown strips (within dark
region) correspond to the chaotic and periodic motions respec-
tively. The blank (white) regions correspond to the initial condi-
tions which don’t have bound solutions, i.e., system goes to infinity.
These basins are generated from 106 random initial conditions in
the range of xic ∈ (0,15), yic ∈ (−30,40) and zic = 0. The basins
of chaotic and periodic motions are determined from the largest
Lyapunov exponents (LE) [29] i.e., for LE > 0.05 corresponds to
the chaotic attractor (criteria for systems having Perron effect –
see Refs. [30,31]) otherwise motion is considered as periodic one.
Apart from these coexisting attractors no other attractor was found
in this range of the initial conditions.

In order to show how the basins of these attractors change as
a function of the parameter α, shown in Fig. 1(d) are the plot of
fractions (F ) of initial conditions which go to either chaotic (solid
line) or periodic (dashed line) attractors. Here the fractions are cal-
culated by considering 104 random initial conditions (in the range
used for Fig. 1(b)) and averaged over the number of initial con-
ditions which go to the oscillatory motion (chaotic or periodic).
This figure shows that there is no bound solution for α � −0.09.
However as α is increased, the chaotic attractor appears. As α is
further increased, for α � −0.005, both the chaotic as well as the
periodic attractors coexist (Fig. 1(b)). From these analysis it is con-
cluded that the systems with hidden attractors can have different
types of oscillating dynamics as well as complicated basins. There-
fore, such systems need to be extensively studied for a complete
understanding of its characteristic behavior.

As we see in Fig. 1(c), the strips corresponding to the peri-
odic or chaotic regime are becoming thinner and thinner near the
boundary of oscillatory and unbounded solutions. In order to see
how the widths (W) of these strips are changing, we consider
the initial conditions on a fixed line at yic = 0 (indicated by ar-
row in Fig. 1(c)). We calculate the width of the each strip which
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