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Abstract

The invariant set and solutions of the two-dimensional reaction–diffusion equation with source term ut = A(u)uxx + B(u)uyy + C(u)u2
x +

D(u)u2
y + Q(u), is discussed. It is shown that there exist a class of solutions to the equation which belong to the invariant set E0 = {u: ux =

vxF (u), uy = vyF (u)}, where v is some smooth function of x and y and F is smooth function of u to be determined. The approach is also
developed to deal with the N -dimensional reaction–diffusion equations with source term.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Similarity solutions play important role in characterizing blow up and long time behavior of solutions to nonlinear parabolic
equations. There have been a number of interesting results on this work (see [1–3] and references therein). Similarity solutions arise
from the scaling invariance of the equations. In [4,5], Galaktionov proposed a “nonlinear” extension to the ordinary scaling group,
which is described by the invariance of the set S0 = {u: ux = (1/x)F (u)}. The extension has been used to construct exact solutions
to equations of the form

(1)ut = E
(
x,u,ux,uxx, . . . , u

(k)
)
,

where u(k) denotes the kth-order derivative of u with respect to x. This approach is also related to the sign-invariant and invariant-
subspace methods [6–8]. Qu and Estevez [9] further extended the scaling group to more general form which is governed by the
invariant set

S1 =
{
u: ux = 1

x
F(u) + εF (u)

[
exp(n − 1)

u∫
1

F(z)
dz

]}
.

This approach has been used successfully to construct solutions to a number of nonlinear evolution equations [9,10].
In this Letter, we extend the Galaktionov’s approach to study the two-dimensional nonlinear reaction–diffusion equations with

source term by introducing the invariant set E0 = {u: ux = vxF (u), uy = vyF (u)}. The invariant set is a natural generalization to S0
for one-dimensional case, and it will be used to obtain solutions of two-dimensional reaction–diffusion equations with source term
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in Section 2. In Section 3, we shall discuss the invariant set and solutions of N(N � 3)-dimensional reaction–diffusion equations
with source term. Section 4 is a concluding remarks on this work.

2. Two-dimensional reaction–diffusion equations

Consider the two-dimensional reaction–diffusion equations with source term

(2)ut = A(u)uxx + B(u)uyy + C(u)u2
x + D(u)u2

y + Q(u),

which has a wide range of physical applications in heat conductivity, combustion and plasma physics, etc. We introduce the invariant
set

(3)E0 = {
u: ux = vxF (u),uy = vyF (u)

}
,

where v is some smooth function of x and y, and F is a function to be determined from the invariant condition

u(x, y,0) ∈ E0 ⇒ u(x, y, t) ∈ E0 for t ∈ (0,1].
For u ∈ E0, we obtain solutions of the equation given by

(4)

u∫
dz

F (z)
= v(x, y) + h(t).

In the set E0, we have the following formulas:

(5)uxx = vxxF + v2
xF

′F, uyy = vyyF + v2
yF

′F.

Suppose Eq. (2) is invariant with respect to the set E0, and substituting (5) into (2), we obtain

(6)h′(t) = Avxx + Bvyy + Q

F
+ (AF ′ + CF)v2

x + (BF ′ + DF)v2
y.

Since the left-hand side of (6) does not depend on x and y, differentiating (6) with respect to x and y respectively yields

Avxxx + Bvyyx +
[
A′vxx + B ′vyy +

(
Q

F

)′ ]
Fvx + (AF ′ + CF)′Fv3

x + 2(AF ′ + CF)vxvxx + (BF ′ + DF)′Fvxv
2
y

+ 2(BF ′ + DF)vyvyx = 0,

Avxxy + Bvyyy +
[
A′vxx + B ′vyy +

(
Q

F

)′ ]
Fvy + (AF ′ + CF)′Fv2

xvy + 2(AF ′ + CF)vxvxy + (BF ′ + DF)′Fv3
y

(7)+ 2(BF ′ + DF)vyvyy = 0.

This system is different from that for the one-dimensional case [4]. It seems very difficult to determine the coefficient functions in
(2) from (7). But we can obtain some results for special v(x, y). Here we consider several special cases:

Case 1. vxy = 0.
From vxy = 0, we deduce

(8)v(x, y) = f (x) + g(y).

In this case, E0 becomes the set E0 = {u: ux = f ′(x)F (u), uy = g′(y)F (u)}. Thus the system (7) reads

Af ′′′ +
[
A′f ′′ + B ′g′′ +

(
Q

F

)′ ]
Ff ′ + (AF ′ + CF)′Ff ′3 + 2(AF ′ + CF)f ′f ′′ + (BF ′ + DF)′Ff ′g′2 = 0,

(9)Bg′′′ +
[
A′f ′′ + B ′g′′ +

(
Q

F

)′ ]
Fg′ + (AF ′ + CF)′Ff ′2g′ + (BF ′ + DF)′Fg′3 + 2(BF ′ + DF)g′g′′ = 0.

Subcase 1.1. Scaling group
Setting f (x) = ln |x|, g(y) = ln |y|, i.e. f ′(x) = 1/x, g′(y) = 1/y. E0 then becomes the set S0 = {u: ux = (1/x)F (u), uy =

(1/y)F (u)}. This is a extension to the scaling group for the one-dimensional case in [4]. Substituting the expressions for f and g

into (9), we obtain

[
2(A − AF ′ − CF) − (A − AF ′ − CF)′F

] 1

x3
− (B − BF ′ − DF)′F 1

xy2
+

(
Q

F

)′
F

1

x
= 0,
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