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The response of a ferroelectric particle to an applied harmonic field is studied using the Fokker–Planck
equation approach. The size effect in dielectric susceptibility is interpreted as the complementarity
between stochastic resonance and response anomaly of the second-order phase transition. The borderline
between stochastic and deterministic behavior is established. Two universal volume-independent ratios
of the damping rates are predicted and may be verified in the relaxation experiments. The approach can
be generalized also to other finite condensed systems.
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1. Introduction

The size-induced phenomena in ferroelectrics, discovered about
fifty years ago [1,2], have been an object of substantial scientific
interest due to their practical importance [3,4]. The critical size,
size effect on the transition temperature, size driven diffuseness
of the ferroelectric transition, size induced peculiarities of the di-
electric properties, and even an interplay between size effects and
time of collecting experimental information in various ferroelec-
tric systems have recently been actively investigated (see, for in-
stance, [5–9]).

In the present communication we introduce the stochastic de-
scription of finite ferroelectric system based on the Fokker–Planck
equation approach. Recently we have demonstrated that stochastic
nature of the order parameter plays the essential role on the size-
dependent properties of restricted systems with a bulk second-
order phase transition [10,11]. It produces the complementarity be-
tween stochastic resonance and response anomaly near the phase
transformation point, representing particularly the experimentally
established fact that system dimension decrease is attended by an
increase in the diffuseness of the phase transition. Proposed model
predicts also lowering of the critical temperature as the size of the
sample decreases. Moreover, the competition of two length scales
in the critical behavior was established. The first scale is similar
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to the correlation length determining the critical behavior in suffi-
ciently large samples. The second scale appears as a consequence
of the stochastic nature of the order parameter and controls the
transitional features in small samples, particularly, in the vicinity
of the critical size [5,12]. We believe that these theoretical find-
ings may be of relevance for the description of the peculiarities of
the critical temperature in ferroelectric particles [6,13–15]. Our ap-
proach predicts also the enhancement of the susceptibility in small
samples due to size stochastic resonance [16,17] relating the latter
phenomenon to the existence of the critical size of a ferroelectric
particle.

The aim of this work is to establish the borderline between
stochastic and deterministic nature of the ferroelectric particles in
terms of response to the weak applied periodic field. We will also
predict two universal volume-independent ratios of the relaxation
times naturally appearing in the ordered and disordered states.

2. Stochastic equation of motion for polarization

We model the temporal evolution of the polarization P as an
order parameter in an uniaxial ferroelectric restricted in space by
the overdamped Langevin equation

dP (t)

dt
= −∂U (P ; T )

∂ P
+ E(t) +

√
T

V
ζ(t). (1)

Here ζ(t) is the zero mean internal Gaussian white noise with
the correlation function 〈ζ(t)ζ(t′)〉 = 2δ(t − t′), T is temperature,
V is the volume of the sample, E(t) is an applied electric field,
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and a temperature-dependent soft potential is taken in the Landau
form [18]

U (P ; T ) = 1

2
a(T )P 2 + 1

4
P 4, (2)

with a(T ) = α(T − T ∞
c ), where the constant α > 0, and T ∞

c is the
temperature of the bulk ferroelectric second-order phase transi-
tion. The potential U (P ; T ) is bistable if T < T ∞

c , and monostable
if T > T ∞

c .
The smallness of the system implies that its dimensions are

smaller than the correlation length of the polarization fluctuations
(analogously to zero-dimensional superconductors [19]). In Eq. (1)
the finiteness of the particles induces stochastic motion in the sys-
tem. The latter vanishes in the bulk limit (V → ∞) leaving us
with the Landau–Khalatnikov equation which describes the de-
terministic relaxation of the polarization to its equilibrium value.
The size driven crossover from stochastic behavior to determinis-
tic one is a substantial feature of the present model. Note that
the consideration stems from the general Landau free energy ex-
pansion where the second and the fourth order terms as well as
the squared gradient of order parameter are taken into account.
In the present approach we neglect the inhomogeneity of fluctua-
tions inside the ferroelectric particle, but incorporate the interwell
dynamics in the potential (2). The opposite limiting case corre-
sponds to the Gaussian approximation where the inhomogeneity
of fluctuations is taken into account, however, the interwell mo-
tions are excluded [20]. For the details of the foundation of the
present model see [10,11].

3. Dynamic dielectric susceptibility

According to the scheme developed in [21], the stationary au-
tocorrelation function of the polarization P in the asymptotic time
limit can be expressed as〈
P (t)P (0)

〉 = g1e−λ1t + g3e−λ3t , (3)

where

g1 = 〈
P 2〉

st − g3, (4)

g3 = [λ1 − a(T )]〈P 2〉st − 〈P 4〉st

λ1 − λ3
. (5)

Here 〈· · ·〉st = ∫ ∞
−∞ · · ·Πst(P )dP , where Πst(P ) is the stationary

probability distribution of the non-perturbed system, and λ1,3 are
the first and third eigenvalues of the non-perturbed Fokker–Planck
operator associated with the Langevin equation (1), i.e.,

L̂FP(P ) = ∂

∂ P

∂U (P ; T )

∂ P
+ T

V

∂2

∂ P 2
. (6)

In accordance with Ref. [22] only the odd eigenvalues contribute
to (3). In (3), the term proportional to the coefficient g1 describes
the contribution from the interwell or hopping dynamics with the
characteristic time τ1 = λ−1

1 , and the term proportional to the co-
efficient g3 describes the contribution from the intrawell or local
dynamics with the corresponding characteristic time τ3 = λ−1

3 to
the correlation in the bistable regime [21]. We calculate the eigen-
values λ1,3 numerically, solving the corresponding Schrödinger
equation [23] by means of the symplectic method, see e.g. [24].

In the bulk limit, the characteristic time τ1 diverges below T ∞
c

and g1e−λ1t → −a(T ), reflecting the fact that τ3 governs the lead-
ing time dependence of the autocorrelation function (3) of a large
system below T ∞

c . Above T ∞
c this characteristic time represents

only a subleading relaxation channel [25]. The relaxation times
exhibit substantial changes as the volume of the ferroelectric par-
ticle decreases, however, the minimum of λ3, appearing as soon as

the relaxation rate λ1 becomes nonzero, remains an essential fea-
ture of the relaxation phenomena in finite particles. This allows
one to observe the evolution of the critical temperature (more
exactly, pseudocritical temperature [26]) in the considered ferro-
electric system [11].

From the correlation function (3) one can derive the linear
dynamic dielectric susceptibility by means of the fluctuation–
dissipation relation [21], namely

χ(T ,Ω) = V

T

[(
g1λ

2
1

λ2
1 + Ω2

+ g3λ
2
3

λ2
3 + Ω2

)

− iΩ

(
g1λ1

λ2
1 + Ω2

+ g3λ3

λ2
3 + Ω2

)]
, (7)

where Ω is the frequency of the applied periodic field E(t). Corre-
spondingly, in the bulk limit we have

χ(T ,Ω) = λ1,3 − iΩ

λ2
1,3 + Ω2

, (8)

where one must choose λ1 = a(T ) if T > T ∞
c , and λ3 = −2a(T ) if

T < T ∞
c . Thus, in this limit the conventional Landau phase transi-

tion theory realizes with the anomaly of the susceptibility at the
phase transition temperature T ∞

c . However, in the finite sample
the polarization P becomes a stochastic variable leading to the
transformation of this anomaly to the phenomenon of stochastic
resonance [10]. The latter peculiarity determines the size driven
crossover from stochastic to deterministic nature of the response
in the considered ferroelectric systems.

4. Size driven crossover from stochastic to deterministic
response

In order to demonstrate the stochastic nature of the order pa-
rameter P we examine the response of the ferroelectric particle
to the weak applied periodic signal. The dependence of dielectric
susceptibility on temperature for various values of the volume are
displayed in Fig. 1. As one can see, the resonant maximum of |χ |
shifts to higher temperatures if the volume increases, approach-
ing asymptotically the response anomaly at the phase transition
point T ∞

c in the infinite volume limit. This process is accompa-
nied by the decrease in diffuseness as the volume increases, i.e.,
the corresponding critical exponent γ ≈ 1.6 for V = 0.1 and γ ≈ 1

Fig. 1. The plots of the dielectric susceptibility vs temperature at frequency Ω = 3
for various volumes V = 0.1 ((a), (b): triangles), V = 1 ((a), (c): circles), V = 10 ((a),
(d): squares) and the bulk limit ((a)–(d): curves without points). In figures (a)–(d)
the modulus of the susceptibility (a), its real part ((b)–(d): solid curves and filled
points) and imaginary part ((b)–(d): dashed curves and empty points) are displayed.
Here we use T ∞

c = 10 and α = 10.
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