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We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry
breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the
values of the parameter that measures this breaking are different for the spacing distribution as compared
to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was
found to account better for the spectral rigidity than the former. Both cases, however, underestimate
the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number
of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry
violation studies in general.

© 2008 Elsevier B.V. All rights reserved.

The study of wave chaos using acoustic resonators [1,2] supplies
an invaluable additional test of Random Matrix Theory (RMT) [3,4].
In a 1996 paper Ellegaard et al. [5], studied the gradual breaking
of the presumed twofold flip symmetry of a quartz crystal by re-
moving an octant of a sphere of an increasing radius at one of
the corners and analysing the statistics of the resulting acoustic
eigenfrequencies. They found a gradual evolution of the spacing
distribution from that of two uncoupled Gaussian Othogonal En-
sembles (2GOE) when the crystal is an uncut perfect rectangle, into
a single GOE, when a large chunk of the crystal is removed from
one of the corners of the rectangle. This constituted a complete
breaking of the symmetry present in the crystal in the uncut sit-
uation. The spectral rigidity, measured by Dyson’s Δ3(L) was also
measured in this reference. The 2 uncoupled GOEs were found to
underestimate by a great amount the large-L data. This was at-
tributed to pseudointegrable trajectories that do not suffer from
the symmetry breaking. This point was further analysed by [6].
Using techniques developed by Pandey [7], Leitner [8] treated the
symmetry breaking problem with RMT-perturbation. He addressed
only the spacing distribution. This work was further extended to
the spectral rigidity in [9]. In all of the above treatment of the
data of [5], the assumption was made that the uncut crystal has a
twofold flip symmetry and thus is describable by two uncoupled
GOEs. The treatment of Leitner [8] is found to describe fairly well
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the NNL distribution, but fails for the spectral rigidity, in contrast
to the exact numerical simulation using the Deformed Gaussian
Orthogonal Ensemble [10], recently performed in [11]. In this Letter
we further analyse the perturbative treatment of symmetry break-
ing within RMT. We find that the data of [5] can be accounted
for with 3GOEs which are gradually mixed till a 1GOE limit is at-
tained. We further find that if some levels were missing in the
sample of eigenfrequencies whose statistics is analysed, the Δ3(L)

can be very well accounted for even at large L without the need
for pseudointegrable trajectories, whose calculation is difficult.

Using appropriate perturbative methods Leitner [8] was able to
find a formula for the nearest neighbor distribution (NND) which
contains the symmetry braking term. He started basically with the
formula for the nearest neighbour spacing distribution for the su-
perposition of m GOE’s block matrices [3]

Pm(s) = d2

ds2
Em(s) (1)

where, for the case of all block matrices having the same dimen-
sion one has

Em(s) =
(

E1

(
s

m

))m

, (2)

E1(x) =
∞∫

x

(
1 − F (t)

)
dt, (3)

F (t) =
t∫

0

P1(z)dz. (4)
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In the above P1(z) is the normalized nearest neighbour spacing
distribution of one block matrix. It is easy to find for Pm(s), the
following

Pm(s) = 1

m

[(
E1

(
s

m

))m−1

P1

(
s

m

)

+ (m − 1)

(
E1

(
s

m

))m−2(
1 − F

(
s

m

))2]
(5)

≡ P (1)
m (s) + P (2)

m (s). (6)

If all the block matrices belong to the GOE, then one can use the
Wigner form for P1(z)

P1(z) = π

2
ze− π

4 z2 ≈ π

2
z, (7)

thus

F1(z) = 1 − e− π
4 z2 ≈ π

4
z2, (8)

E1(z) = erfc

(√
π

2
z

)
≈ 1 − z, (9)

where the large-z limits of Eqs. (7)–(9) are also indicated above.
It is now clear that the above expression for Pm(s), (5) and (6),
contains a term P (1)

m (s) with level repulsion, indicating short-range
correlation among levels pertaining to the same block matrix and a
second term P (2)

m (s) with no level repulsion, implying short-range
correlation among NND levels pertaining to different blocks. Notice
that for very small spacing, Pm(s) behaves as

Pm(s) ≈ π

2m2
s + m − 1

m
(10)

for m = 1, we get the usual P1(0) = 0, while for m > 1, we get
Pm(0) = (m − 1)/m.

To account for symmetry breaking, Leitner [8] considered the
mixing between levels pertaining to nearest neighbour block ma-
trices and entails using the 2×2 P (s) distribution with full mixing.
The DGOE result for the 2 × 2 matrix was derived in [12] and the
resulting P (s) is a product of a Poissonian term times a mixing
term. Leitner’s procedure [8] amounts to multiply the factor P (2)

m (s)
of Eq. (6) by only the mixing term of the 2 × 2 P (s) of [12] with
the mixing parameter Λ given by [7], Λ = λ2ρ2, with λ2 being
the ratios of the variances of the matrix elements within a block
matrix to that of matrix elements pertaining to neighbouring off
diagonal block matrices, and ρ is the density of eigenfrequencies.
Thus, he found, assuming that Λ � 1,

Pm(s,Λ) = P (1)
m (s) + P2×2(s,Λ)P (2)

m (s), (11)

where P2×2(s,Λ) is given by [8]

P2×2(s,Λ) =
√

π

8Λ
I0

(
s2

16Λ

)
exp

(
− s2

16Λ

)
, (12)

where I0 is the modified Bessel function of order 0. Though Pm(s)
is normalized, Pm(s,Λ) is not. Accordingly one supplies coeffi-
cients cN and cD such that

Pm(s,Λ, cN , cD) ≡ cN Pm(cD s,Λ) (13)

is normalized to unity. Similarly, 〈s〉 should be unity too. Eq. (11)
can certainly be generalized to consider the effect of mixing of lev-
els pertaining to next to nearest neighbour blocks, and accordingly,
P3×3(s,Λ), given in Ref. [12] would be used in Eq. (11) instead of
P2×2(s,Λ). In the following, however, we use Eqs. (11), (13) as
Leitner did [8].

In [8], Leitner also obtained approximate expression for the
spectral rigidity Δ3(L) using results derived by French et al. [13].

Leitner’s approximation to Δ3 is equal to the GOE spectral rigidity
plus perturbative terms, that is

Δ
(m)
3 (L;Λ) ≈ Δ3(L;∞) + m − 1
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− 2
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− 1
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(
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− 9

4

]
, (14)

where

ε = π

2(τ + π2Λ)
. (15)

For the cut off parameter we use the value [9] τ = cmeπ/8−γ −1,
where cm = mm/(m−1) and γ ≈ 0.5772 is Euler’s constant. This
choice guarantees that when the symmetry is not broken, Λ = 0,
Δ

(m)
3 (L,0) = mΔ3(L/m,∞). In Ref. [14], Leitner fitted Eq. (13) for

m = 2 to the NND from Ref. [5], however, he did not fit the spec-
tral rigidity. It is often the case that there are some missing levels
in the statistical sample analysed. Such a situation was addressed
recently by Bohigas and Pato [15]. These authors have started from
the general expression of Δ3(L) derived by Dyson and Mehta [4],
namely,

Δ3(L) = L

15
− 1

15L4

L∫
0

dx (L − x)3(2L2 − 9xL − 3x4)Y2(x), (16)

where the two-point cluster function, Y2(x1, x2), which owing to
translational invariance becomes a function of the difference x =
|x1 − x2|, is defined by the usual expression,

Y2(x1, x2) = 1 − R2(x1, x2)

R1(x1)R1(x2)
, (17)

where R2 is the 2-point correlation function and R1 is the density
of the spectrum.

If a fraction, 1− g , of the levels were actually analysed, the clus-
ter function remains invariant, apart from a rescaling of the rele-
vant variables, when the unfolded spectrum is employed, namely

Y g
2 (x1, x2) = 1 − (1 − g)2 R2(xg

1 , xg
2)

(1 − g)R1(xg
1)(1 − g)R1(xg

2)
= Y2

(
xg

1 , xg
2

)
, (18)

where the scaled variables xg
i are just xi

(1−g)
.

Using the above equation for the cluster function in the general
expression for Δ3(L), we obtain the Missing-Level (ML) expression
of [15]

Δ
g
3(L) = g

L

15
+ (1 − g)2Δ3

(
L

1 − g

)
. (19)

In the application to our current problem of m-coupled GOE’s,
the above formula continue to be valid since the basic input into
its derivation, namely the invariance of Y2, apart from the scaling
of the argument x into xg , is quite general. Accordingly, we have
the desired ML formula of Δ3(L) for m-coupled GOEs,

Δ
(m)g
3 (L;Λ) = g

L

15
+ (1 − g)2Δ

(m)
3

(
L
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;Λ

)
. (20)

The presence of the linear term, even if small, could explain
the large L behavior of the measured Δ3(L). We call this effect the
Missing-Level (ML) effect. Another possible deviation of Δ3 from
Eq. (14) could arise from the presence of pseudo-integrable effect
(PI) [6,16]. This also modifies Δ3 by adding a Poisson term just like
Eq. (19).

The results of our analysis are shown in Figs. 1 and 2. In Fig. 1,
the sequence of six measured NNDs were fitted for m = 2 and
m = 3. It can be seen that the Leitner model with three coupled
GOEs give a comparable and in some cases even better fit than the
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