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Abstract

The thermodynamics of a dissipative two-level system is studied by means of the perturbation approach based on a unitary transformation.
Both the Ohmic and non-Ohmic dissipative heat-bath are treated. Analytical results for entropy, specific heat, and static susceptibility are obtained
for the scaling limit∆/ωc � 1 as well as the general 0< ∆/ωc < 1 case. For the sub-Ohmic bath the transition between the delocalized and
localized phase is discussed. Our approach is quite simple and yet it gives correct thermodynamics for the lower-temperature region and weak
coupling case.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the past two decades the low-temperature proper-
ties of a two-level system coupled to a heat-bath (spin–boson
model, SBM) have attracted considerable attention, since it pro-
vides a universal model for numerous physical and chemical
processes[1,2], such as defect-tunnelling in solids[3], the exci-
ton excitation coupled to phonons in quantum dots[4], and the
macroscopic quantum coherence experiment in SQUID’s[5].
The Hamiltonian of SBM is

(1)H = −1

2
∆σx +

∑
k

ωkb
†
kbk + 1

2

∑
k

gk

(
b

†
k + bk

)
σz,

here b
†
k (bk) is the creation (annihilation) operator of boson

mode with frequencyωk , σx andσz are Pauli matrices to de-
scribe the two-level system.∆ is the bare tunnelling amplitude
andgk the coupling constant. The heat-bath is characterized by
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its spectral density[1,2]

(2)
∑

k

g2
kδ(ω − ωk) = 2αsω

1−s
c ωsθ(ωc − ω),

whereαs is the dimensionless coupling constant andθ(x) is the
usual step function. In this Letter we consider in generals > 0
spectra. Usually,s = 1 is called Ohmic bath,s > 1 the super-
Ohmic one, while 0< s < 1 the sub-Ohmic one.

The Hamiltonian(1) seems quite simple. However, it cannot
be solved exactly and various approximate analytical and nu-
merical methods have been used[1–20]. The dynamics of SBM
as a function of the couplingαs has been the subject of exten-
sive studies and the main theoretical interest is to understand
how the environment influences the dynamics of the two-level
system and, in particular, how dissipation destroys quantum
coherence. Although the thermodynamical properties of SBM
should be also of interests, as far as we know, previous detailed
studies of the thermodynamics of SBM are not so much. The
path integral method was used by Goerlich and Weiss[21] to
calculate the partition function of the dissipative two-state sys-
tem for both Ohmic and non-Ohmic dissipation. But, generally
speaking the results from path integral method are restricted
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to small tunnelling∆/ωc � 1. The numerical renormalization
group with a fermionic bath was used by Costi[22] to study
SBM with Ohmic dissipation. The Bethe-ansatz method was
used by Costi and Zarand[23] to determine the entropy, the
specific heat and the static susceptibility as functions of the tem-
perature. This method is valid only fors = 1, since it depends
on the mapping between Kondo model and SBM. Besides, since
the bosonization technique is used to map Kondo model to SBM
[23], the equivalence between SBM and Kondo model is rigor-
ous only in the limit where the momentum cutoff 1/a goes to
infinity. This is equivalent toωc → ∞ in this work. This is to
say that, away from the scaling limit and when 0< ∆ < ωc, the
equivalence between SBM and Kondo model is approximately
and one can expect some deviation of the properties of SBM
from those of Kondo model. Very recently, the numerical renor-
malization group for a bosonic bath was used by Bulla et al. to
study SBM with Ohmic as well as non-Ohmic spectra[18].

If the tunnelling term in(1), −1
2∆σx , is substituted by

−1
2εσz, the model becomes the two-level (with level differ-

enceε) independent boson model[24] which can be solved
exactly. The physical difference between the two models is the
following: The spin–boson coupling in SBM (the third term in
(1)) describes a transition between two eigen-states of−1

2∆σx

(the first term in(1)), but in independent boson model the
fermion–boson interaction is on the level.

In this Letter we study the thermodynamics of dissipative
SBM with a s > 0 spectral density. We present a new analyti-
cal approach[20] based on the unitary transformation method
and the perturbation theory for calculating the thermodynamic
quantities of SBM. Usually, people believe that perturbation ap-
proach is not good for dissipative SBM because of the infrared
divergence in calculating the renormalized tunnelling frequency
and other physical quantities by perturbation expansion. Here
we try to get rid of the divergence by using a unitary trans-
formation. This approach works well for the low-temperature
region and weak coupling case with 0< ∆ < ωc. Throughout
this Letter we set̄h = 1 andkB = 1.

2. Unitary transformation

Here we present a treatment using a unitary transforma-
tion. The transformation, which is defined asH ′ = exp(S)H ×
exp(−S), is applied toH and its aim is to take into account the
correlation between the spin and bosons. We propose the fol-
lowing form for the generator:

(3)S =
∑

k

gk

2ωk

ξk

(
b

†
k − bk

)
σz.

Here, we introduce inS a k-dependent functionξk and its form
will be determined later. Performing the transformation one
gets the result

(4)H ′ = H ′
0 + H ′

1 + H ′
2,

(5)H ′
0 = −1

2
η∆σx +

∑
k

ωkb
†
kbk −

∑
k

g2
k

4ωk

ξk(2− ξk),

H ′
1 = 1

2

∑
k

gk(1− ξk)
(
b

†
k + bk

)
σz

(6)− 1

2
η∆iσy
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k

gk

ωk

ξk

(
b

†
k − bk

)
,

H ′
2 = −1

2
∆σx

(
cosh
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gk

ωk

ξk

(
b

†
k − bk

)} − η

)

− 1

2
∆iσy

(
sinh

{∑
k

gk

ωk
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(
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†
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(7)− η
∑

k

gk

ωk

ξk

(
b

†
k − bk

))
,

where the renormalization of the tunnelling term is

(8)η = exp

[
−

∑
k

g2
k

2ω2
k

ξ2
k coth

(
ωk

2T

)]
.

H ′
0 is now the unperturbed part ofH ′ and, obviously it can be

solved exactly since the spin and bosons are decoupled. The
eigenstate ofH ′

0 is a direct product:|s〉|{nk}〉, where|s〉 is the

eigenstate ofσx : |s1〉 = 1√
2

(1
1

)
or |s2〉 = 1√

2

( 1
−1

)
, and|{nk}〉 is

the eigenstate of bosons withnk bosons for modek. In particu-
lar, |{0k}〉 is the vacuum state in whichnk = 0 for everyk. The
ground state ofH ′

0 is

(9)|g0〉 = |s1〉
∣∣{0k}

〉
.

H ′
1 andH ′

2 are treated as a perturbation and they should be
as small as possible. For this purposeξk is determined as

(10)ξk = ωk

ωk + η0∆
,

whereη0 = η(T = 0). Note that 0� ξk � 1 measures the in-
tensity of the spin–boson coupling:ξk ∼ 1 if the boson fre-
quencyωk is larger than the renormalized tunnellingη0∆; but
ξk � 1 for ωk � η0∆. Since the transformation generated by
S is a displacement one, physically, one can see that high-
frequency bosons (ωk > η0∆) follow the tunnelling particle
adiabatically because the displacement isgkξk/ωk ∼ gk/ωk .
However, bosons of low-frequency modesωk < η0∆ in general
are not always in equilibrium with the tunnelling particle, and
hence the particle moves in a retarded potential arising due to
the low-frequency modes. When the non-adiabatic effect dom-
inates,ωk � η0∆, the displacementξk � 1. Because of this
definition forξk we have

(11)H ′
1 = 1

2
η0∆

∑
k

gk

ωk

ξk

[
b

†
k(σz − iσy) + bk(σz + iσy)

]
,

whenT = 0, andH ′
1|g0〉 = 0. This is essential in our approach.

By choosing the form ofξk (Eq.(10)) andη (Eq.(8)) it is possi-
ble to treatH ′

1 andH ′
2 as perturbation because of the following

reason. If we treat the coupling term in the original Hamiltonian
H as the perturbation, the dimensionless expanding parameter
is g2

k/ω
2
k . For Ohmic baths = 1 it is 2α1/ω which is log-

arithmic divergent in the infrared limit. But for the coupling
in transformed Hamiltonian,H ′

1, the expanding parameter is
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