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Matrix oscillator and Laughlin Hall states
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Abstract

We propose a quantum matrix oscillator as a model that provides the construction of the quantum Hall states in a direct way. A connection
of this model to the regularized matrix model introduced by Polychronakos is established. By transferring the consideration to the Bargmann
representation with the help of a particular similarity transformation, we show that the quantum matrix oscillator describes the quantum mechanics
of electrons in the lowest Landau level with the ground state described by the Laughlin-type wave function. The equivalence with the Calogero
model in one dimension is emphasized. It is shown that the quantum matrix oscillator and the finite matrix Chern–Simons model have the same
spectrum on the singlet state sector.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The finding of quantum levels of nonrelativistic electrons in
a uniform magnetic field is a well-known problem in quantum
mechanics and extends to studying the physics of the quantum
Hall effect. The physics of electrons in the lowest Landau level
exhibits some interesting features, the example of which is the
occurrence of the incompressible fluid like[1] states of con-
densed electrons whose excitations have fractional charge and
obey fractional statistics[2,3]. These states appear only when
the electron densities are certain rational fractions of the density
corresponding to a fully filled lowest Landau level and the gap
in their excitation spectrum gives rise to the experimentally ob-
served fractional quantum Hall effect. They are described by the
Laughlin wave functions[4]. The tools for studying the exact-
ness and universality of the Laughlin wave functions are offered
in a natural way in the realm of matrix models[5].
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One can argue about using noncommutative physics for de-
scribing real physical systems, such as the quantum Hall fluid.
The natural realization of noncommutative space is provided
by the planar coordinates of quantum particles moving in a
constant magnetic field. Recently, an attempt was made by
Susskind[6] to describe the incompressible quantum Hall fluid
in terms of the noncommutative Chern–Simons theory on the
plane, the approach that has the connection to an analogy be-
tween the physics of electrons in a strong magnetic field and
the properties of D-branes in string theory[7]. The dynamics of
quantum Hall fluids in the framework of noncommutative field
theory was treated in[8,9].

As the Chern–Simons theory on the plane necessarily de-
scribes a spatially infinite quantum Hall system, it was also of
interest to find a description of finite systems with a finite num-
ber of electrons and this was achieved by the model introduced
by Polychronakos[10]. Such a regularized model, proposed
as a theory of finite matrices with additional boundary vector
fields, has provided a description of the quantum Hall droplet
and its boundary excitations[11]. The quasiparticle and quasi-
hole states were explained in terms of Schur functions within
an algebraic approach[12].
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The finite matrix Chern–Simons model is described by two
matricesX1,X2 or A,A†. It was shown[12] that both these
matrices could not be diagonal simultaneously with some oper-
ators on the diagonal. This would lead to inconsistencies and to
only two towers of states of the Bose and Fermi type, respec-
tively. There was also a problem with the construction of the
general Laughlin states[13]. However, the strong connection
of the matrix Chern–Simons model with the Calogero model
and the quantum Hall effect was pointed out in[10–13].

Recently, a quantum matrix oscillator was proposed and
its equivalence to the Calogero-type models was established
[14,15]. The classical version of the matrix oscillator was intro-
duced in[16] and the path integral quantization of this model
was performed in[17].

In this Letter we propose a quantum matrix oscillator and es-
tablish its connection to the finite matrix Chern–Simons model
introduced by Polychronakos. We use the matrix oscillator
model[14] to find the physical states of electrons in the lowest
Landau level. The ground states are Laughlin-type states and
the analysis leading to this result, together with the construc-
tion of the excited states, relies heavily on the consideration
that is carried out in the Bargmann representation. The main
point here is to reduce the eigenvalue problem to a much sim-
pler one and then to transfer the obtained results back to the
original problem, with the help of a conveniently constructed
similarity transformation. Although the analysis is performed
for the one-dimensional case only, it can as well be straight-
forwardly extended to two and higher dimensions as long as
identical particles are considered. As a consequence, the results
obtained can be analytically continued onto the whole complex
plane incorporating in such a way the wave functions of the true
Laughlin form that depend on complex variables. The relevance
of the matrix oscillator model to the quantum Hall physics has
been emphasized throughout the procedure.

The Letter is organized as follows. In the Section2 we intro-
duce the matrix oscillator model and make a connection to the
finite matrix model. The next step is made in Section3 where
the equation of motion stemming from the matrix model ac-
tion is recognized as the quantization condition imposed on the
matrix coordinates of the electrons. After finding the represen-
tation of the matricesX1 andX2, that solve the quantization
condition, in Section4 we construct the matrix operators re-
quired for building up the Fock space of states for the matrix
oscillator model. The main result and the crucial analysis of
the Letter is contained in Section5, where the transition to a
particularly convenient Bargmann representation is made. This
enables us to identify the eigenstates of the matrix oscillator
model as the wave functions of physical states describing elec-
trons in the lowest Landau level, including the ground state
Laughlin wave function and excitations over the Laughlin state.

2. Matrix oscillator and action

Let us construct an action for the matrix oscillator described
by N ×N matricesX,P with operator-valued matrix elements,
(Xij )

† = Xji , (Pij )
† =Pji ; i, j = 1,2, . . . ,N . We take the ma-

trix X to be diagonal, with real elements. The Hamiltonian and

commutation relations[14] are then(h̄ = 1)

(1)H = R

(
1

2m
P2 + 1

2
mω2X2

)
C,

(2)[X,P] = ıV, V = (1− ν)1 + νJ ,

whereR = (1 . . .1) is a row-vector whose all components are
units, andC = RT is a transpose ofR. Also, we haveRC =
N andCR = J , whereJ is theN × N matrix with units at
all positions. The matrixV is symmetric,VT = V , whereν >

−1/N is a real parameter andm is the mass. Generally,V is
a Hermitian matrixV† = V , with νii = 1 andν∗

ij = νji, ∀i, j ,
and the effective Hamiltonian contains three-body interactions
[15].

In order to describe two-dimensional systems ofN charged
particles with chargee in a magnetic fieldB, it is convenient to
define the matrixX1 ≡ X and a second matrixX2 expressed in
terms ofP as

(3)X2 = − 1

eB
P = − 1

mω
P,

where ω = eB/m. Note that the trace Tr[X1,X2] is equal
to N

ıeB
, in accordance with the relation(2).

The coordinates of the electrons can be globally parame-
trized in a fuzzy way by introducing twoN × N Hermitian
matricesXa ; a = 1,2. The action leading to the quantum matrix
oscillator is then given by the regularized finite matrix Chern–
Simons model introduced by Polychronakos

SM = eB

2

∫
dt Tr

[
εabXa

(
Ẋb − ı[A0,Xb]

) + 2θA0
]

(4)− ωeBN

2ψ̄ψ

∫
dt ψ̄XaXaψ −

∫
dt ψ̄(ı∂t + A0)ψ,

where eBθ = k, A0 is a matrix entering into the above ac-
tion only linearly andψ (ψ̄ = ψ∗T ) is a boundary vector
field. The action(4) is invariant under the transformations
Xa → UXaU

−1, ψ → Uψ , ψ̄ → ψ̄U−1, A0 → UA0U
−1 +

ıU∂tU
−1, whereU is a unitary matrix,U ∈ U(N). The term

with ω serves as a potential box that keeps particles near the ori-
gin and also provides a Hamiltonian for the theory that chooses
a unique ground state, while the last term in the action can
be interpreted as a boundary term. Also, note that the minor
change is made in the harmonic term in respect to the action
of Ref. [10], namely Tr(Xa)

2 is replaced byψ̄(Xa)
2ψ . But,

as these two parts yield the same spectrum when acting on the
singlet sector of theU(N) group, this replacement essentially
does not make any difference. The only reason for replacing the
Tr(Xa)

2 by ψ̄(Xa)
2ψ is that the later gives rise to the quantum

Calogero model (in the quantum Calogero model the inverse
square potential term hasν(ν + 1) as a prefactor, withν being
the coupling constant), while the former is related to the classi-
cal Calogero model (this has the factorν2 in front of the inverse
square potential term). Later, we shall see that, after a diagonal
form of one of the matricesX1 or X1 + ıX2 is assumed, the
boundary fields transform into theR,C matrices, i.e., row and
column matrices defined after Eq.(2).
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