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Abstract

We propose a quantum matrix oscillator as a model that provides the construction of the quantum Hall states in a direct way. A connectior
of this model to the regularized matrix model introduced by Polychronakos is established. By transferring the consideration to the Bargmanr
representation with the help of a particular similarity transformation, we show that the quantum matrix oscillator describes the quantum mechanic
of electrons in the lowest Landau level with the ground state described by the Laughlin-type wave function. The equivalence with the Calogerc
model in one dimension is emphasized. It is shown that the quantum matrix oscillator and the finite matrix Chern—Simons model have the sam
spectrum on the singlet state sector.
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1. Introduction One can argue about using noncommutative physics for de-
scribing real physical systems, such as the quantum Hall fluid.

The finding of quantum levels of nonrelativistic electrons in'llj'hehnatulral reallzagpn of nofncommutatlve ?’ﬁace 1S prov!ded
a uniform magnetic field is a well-known problem in quantum y the planar coordinates of quantum particles moving in a

mechanics and extends to studying the physics of the quantuf;r?ns'ta_nt magnetic T'eld' R_ecently, an attempt was made_ by
Hall effect. The physics of electrons in the lowest Landau IeveFUSSkmcm] 1o describe the mgompressmlg quantum Hall fluid
exhibits some interesting features, the example of which is thi terms of the noncommutative Chern—S!mons theory on the
occurrence of the incompressible fluid likg] states of con- plane, the apprgach that has th? connection to an .a”"?"ogy be-
densed electrons whose excitations have fractional charge aﬁg{een the physllccg gf elect.ronsiln ahstrongrrr]nagnetlc 'f|eldfand
obey fractional statisticR,3]. These states appear only whent € prope:|elf f(I) . d- _rar;]esfm string tke?ﬂ'. € ynam_lcs;)_ Id
the electron densities are certain rational fractions of the densit&uamum all flut ds_ln; e framework of noncommutative fie
corresponding to a fully filled lowest Landau level and the gap e:ry \r/]vasctrr]eate S{T& ] h he ol iiv d
in their excitation spectrum gives rise to the experimentally ob- 'bs the e.rr:l_ .|r?_o.ns theory onHt l? plane ngcessarlly ?_
served fractional quantum Hall effect. They are described by thgcripes a spatla yin ".m? quanf[u.m a SVSte”?’ I was also o
Laughlin wave functiong4]. The tools for studying the exact- interest to find a description of finite systems with a finite num-

ness and universality of the Laughlin wave functions are oﬁ‘ere@er of electrons and this was achieved _by the model introduced
in a natural way in the realm of matrix modét. y Polychronakoq10]. Such a regularized model, proposed
as a theory of finite matrices with additional boundary vector

fields, has provided a description of the quantum Hall droplet
— and its boundary excitatiorj$1]. The quasiparticle and quasi-
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The finite matrix Chern—Simons model is described by twocommutation relationfl4] are then(iz = 1)
matricesX1, Xo or A, AT, It was shown[12] that both these

matrices could not be diagonal simultaneously with some opery _ p (ipz + }mwzxz)c (1)
ators on the diagonal. This would lead to inconsistencies and to 2 ’
only two towers of states of the Bose and Fermi type, respeqx p1—,), V=(1—v)1+vJ7, )

tively. There was also a problem with the construction of the

general Laughlin state]d3]. However, the strong connection whereR = (1...1) is a row-vector whose all components are
of the matrix Chern-Simons model with the Calogero modelunits, andC = R is a transpose oR. Also, we haveRC =
and the quantum Hall effect was pointed oufi0-13] N andCR = J, whereJ is the N x N matrix with units at

Recently, a quantum matrix oscillator was proposed andll positions. The matri®’ is symmetric,V” =V, wherev >
its equivalence to the Calogero-type models was establishedl/N is a real parameter and is the mass. Generally] is
[14,15] The classical version of the matrix oscillator was intro- a Hermitian matrixyT =V, with v;; = 1 andvi*j =vj, Vi, j,
duced in[16] and the path integral quantization of this model and the effective Hamiltonian contains three-body interactions
was performed ifi17]. [15].

In this Letter we propose a quantum matrix oscillator and es- In order to describe two-dimensional systems\o€harged
tablish its connection to the finite matrix Chern—Simons modeparticles with charge in a magnetic field, it is convenient to
introduced by Polychronakos. We use the matrix oscillatoidefine the matrixX; = X and a second matriX, expressed in
model[14] to find the physical states of electrons in the lowestterms ofP as
Landau level. The ground states are Laughlin-type states and
the analysis leading to this result, together with the construcy, — _ip = _iy)’ (3)
tion of the excited states, relies heavily on the consideration eB mw
that is carried out in the Bargmann representation. The maim/herew = ¢B/m. Note that the trace TK1, X»] is equal
point here is to reduce the eigenvalue problem to a much sinto _B in accordance with the relatiq@).
pler one and then to transfer the obtained results back to the The coordinates of the electrons can be globally parame-
original problem, with the help of a conveniently constructedtrized in a fuzzy way by introducing tw&v x N Hermitian
similarity transformation. Although the analysis is performedmatricesX,; a = 1, 2. The action leading to the quantum matrix
for the one-dimensional case only, it can as well be straightoscillator is then given by the regularized finite matrix Chern—
forwardly extended to two and higher dimensions as long asimons model introduced by Polychronakos
identical particles are considered. As a consequence, the results
obtained can be analytically continued onto the whole comple eB :
plane incorporating in such a way the wave functions of the true™ = 2 / d Tr[e“bx“ (Xb —ilAo, Xb]) + ZQAO]
Laughlin form that depend on complex variables. The relevance weBN
of the matrix oscillator model to the quantum Hall physics has - 20
been emphasized throughout the procedure.

The Letter is organized as follows. In the Sectbwe intro-  whereeBf = k, Ag iS a matrix entering into the above ac-
duce the matrix oscillator model and make a connection to théon only linearly andy (¢ = v*7) is a boundary vector
finite matrix model. The next step is made in Sectbowhere field. The action(4) is invariant under the transformations
the equation of motion stemming from the matrix model ac-X, — UX, U™, v — Uy, ¥ — YU L, Ag— UAU ™1 +
tion is recognized as the quantization condition imposed on thel/9,U ~1, whereU is a unitary matrixU € U(N). The term
matrix coordinates of the electrons. After finding the represenwith « serves as a potential box that keeps particles near the ori-
tation of the matrices(; and X», that solve the quantization gin and also provides a Hamiltonian for the theory that chooses
condition, in Sectiom we construct the matrix operators re- a unique ground state, while the last term in the action can
quired for building up the Fock space of states for the matrixoe interpreted as a boundary term. Also, note that the minor
oscillator model. The main result and the crucial analysis othange is made in the harmonic term in respect to the action
the Letter is contained in Sectidi) where the transition to a of Ref. [10], namely T(X,)? is replaced byy (X,)%y. But,
particularly convenient Bargmann representation is made. Thias these two parts yield the same spectrum when acting on the
enables us to identify the eigenstates of the matrix oscillatosinglet sector of thé/ (N) group, this replacement essentially
model as the wave functions of physical states describing eledoes not make any difference. The only reason for replacing the
trons in the lowest Landau level, including the ground stateéTr(X,)? by ¥ (X,)2y is that the later gives rise to the quantum
Laughlin wave function and excitations over the Laughlin stateCalogero model (in the quantum Calogero model the inverse

square potential term hagv + 1) as a prefactor, witlr being
2. Matrix oscillator and action the coupling constant), while the former is related to the classi-
cal Calogero model (this has the factdrin front of the inverse

Let us construct an action for the matrix oscillator describedsquare potential term). Later, we shall see that, after a diagonal
by N x N matricesX, P with operator-valued matrix elements, form of one of the matriceX; or X; + 1 X» is assumed, the
Xipt=X;i, Pipt=Pjii, j=1,2,..., N.Wetakethema- boundary fields transform into the, C matrices, i.e., row and
trix X to be diagonal, with real elements. The Hamiltonian andcolumn matrices defined after E@).

dm/}xaxaw—/dz&(za,Jer)w, 4)
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