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Abstract

We investigate asymptotically the occurrence of anomalous diffusion and its associated family of statistical evolution equations. Starting from
a non-Markovian process a la Langevin we show that the mean probability distribution of the displacement of a particle follows a generalized
non-linear Fokker-Planck equation. Thus we show that the anomalous behavior can be linked to a fast fluctuation process with memory from
a microscopic dynamics level, and slow fluctuations of the dissipative variable. The general results can be applied to a wide range of physical

systems that present a departure from the Brownian regime.
© 2007 Elsevier B.V. All rights reserved.
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Considerable interest and effort has recently been applied to
the analysis of anomalous behavior in collective motion. Stud-
ies in this area go from turbulence [1], granular matters [2] and
economic processes [3] to social behavior [4]. An example of
the signature of such processes is the well known anomalous
diffusion behavior, where the second moment (x(r)%) o< 1%,
with o # 1, is the archetypal quantity of analysis [5]. This com-
munication aims to introduce some insight into the microscopic
foundation a la Langevin of such ubiquitous behaviors, passing
from the equation of motion of a single particle (microscopic
dynamic) to the effective statistical properties of the ensemble
system (macroscopic laws).

One intriguing aspect in the description of complex systems
is the existence of a non-linear Fokker—Planck equation (NLFP)
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which combines aspects that make it very appropriate to treat,

at this point phenomenologically, different fields where anom-
alous behaviors are relevant (like anomalous transport and long

q >0, (1)
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tail probability distributions among others). In fact, this NLFP
equation has been applied to disordered systems and porous
media [6], where the underlying processes present character-
istics of self-similarity, scaling laws, etc., as well as to non-
extensive statistical mechanics (see [7] and references therein).

Such equation can be derived, in the case of porous media,
combining the continuity equation with two empirical relations:
Darcy’s law and a state equation for polytropic gases (or flu-
ids) p o p”; where p is the pressure and p the density [8]
of these systems. In non-extensive statistical mechanics theory,
for the general case, the NLFP equation has been derived em-
ploying self consistent approaches [7,9], using Langevin equa-
tions which are themselves functions of the probability, that is
x(t) = Flx, P(x,1), n(t)], where n(¢) is a white noise. Then,
taking into account an appropriated stochastic calculus (Ito,
Stratonovich, etc.), it is possible to arrive at the NLFP equa-
tion written in Eq. (1).

It is worth stressing that this non-linear evolution equa-
tion has been extensively applied to the formalism of non-
extensive statistical mechanics, where applications in various
scientific fields have been reported, including: long range in-
teraction [10], multifractality [11], behavior at the edge of
chaos [12], and others (see [7] and references therein). It
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is therefore a very important task to give an explanation of
such non-linear evolution for the probability distribution, which
turns out to be of relevance in many complex systems studies.

The above mentioned methodology for deducing the NLFP
equation shows an interesting gap in understanding the fun-
damental underlying processes that make possible the non-
linearity in the evolution equation of this probabilistic function.
None of the previous approaches give a clear answer to the
problem, apart from showing that those processes can present
memory effects at a microscopic level, which may be an impor-
tant ingredient for the emergence of this particular non-linear
(anomalous) evolution.

We will proceed as follows. Starting from one particle dy-
namics, a la Langevin, with memory components, we will be
able to infer its asymptotic probability distribution in space and
time and the resulting evolution equation. Then, after calculat-
ing the average over the slow fluctuations, we will obtain the
general expression for the related NLFP equation.

The microscopy dynamics a la Langevin. The presence of
a memory kernel in the Langevin equation goes back to works
by Kubo, Mori, Nakajima, Zwanzig, et al. (see for example
Ref. [13]), but more recently there have been studies showing
that a memory kernel is equivalent to the introduction of a frac-
tional differential operator [14]. This has been considered in
the Langevin framework, as well as in the Fokker—Planck equa-
tion, and makes it possible to describe the anomalous transport
process with some degree of accuracy. Let us examine the dy-
namics of a single particle coupled to a complex heat bath with
temperature kg 7. The equation of motion of such a particle can
be written in the form

t
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we have denoted with 0" a possible cut-off. Here £(¢) is a
Gaussian long-range correlated noise and y (¢) the associated
dissipative kernel that can be obtained from the elimination of
bath variables [15]. The dissipative kernel y (¢) calculated from
a microscopic random-matrix model, is

MkBTy(t)=2A0F(a)cos<%>t_“, t>0, 3)

where the exponent o characterizes, in the non-Ohmic regime,
the behavior of the spectral density of the bath at low frequen-
cies [16]. The solution we are looking for is subject to the initial
conditions x(0) = 0 and x(0) = 0. It is worth mentioning here
that in Ref. [17] we have introduced a functional approach that
enables us to solve this kind of linear memory-like Langevin
equation in the presence of any arbitrary noise & (¢), neverthe-
less, in the present communication we are interested only in a
Gaussian noise.

Note that if we rewrite the equation of motion (2) using a
fractional derivative, it is possible to see that it differs from the
usual Langevin equation by introducing, in the dissipative term,
a fractional differential operator of order @ — 1, for @ € (0, 2),
with a coefficient y, = w Ag/[MkpT sin(am/2)] being the dis-

sipation parameter due to complex friction model. As we re-
marked before, £(7) is a Gaussian noise with zero mean and
correlation (£(¢)&(0)) = 2AoI [a]cos(amr/2)t™%, with t > 0.
Ao is the coupling strength of the particle with the complex
bath. Eq. (2) allows us to obtain several results concerning sta-
tistical properties of an ensemble of particles subject to slow
fluctuations in their dynamic (dissipative) parameter, as we will
describe in detail below. In particular we are interested in the
description of the position of the particle at a given time, which
can be addressed using the marginal probability distribution
P(x,t)= [ P(x,V,1)dV; where V() = x(1).

Because the noise is Gaussian, the calculation of the two-
dimensional joint probability distribution P(x, V,t) is simply
done in terms of a few cumulants, then, following [17], we can
calculate the marginal probability distribution P (x, ) knowing
the second moment of the position, which is given by

2kT
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where E,, , is the generalized Mittag—Leffler function [18]. Af-
ter a transient, the second moment has a clear anomalous be-
havior, given by [19]
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we have defined b = My, I'(1 + «)/(2kT). For o = 1 this
result coincides with the well known diffusive behavior ob-
tained from the asymptotic limit of the Ornstein—Uhlenbeck
process [5,20]. The solution for the asymptotic marginal prob-
ability distribution is given by

b bx?
P(x,t|b) = P(x,1) = 2maexp<—ﬁ , (6)

where we have denoted explicitly the conditional character of
the distribution with the parameter b. This quantity, b, can be
seen as a slow-effective dissipative coefficient for this anom-
alous process. We mention here that the evolution equation of
such an asymptotic processes is given by a diffusion-like equa-
tion, as was also pointed out in [21]
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In fact, if we associate « =2 H with @ € (0,2), P(x, t|b) is the
1 — time probability distribution of the well known fractional
Brownian motion (fBm) process [5,22]. This result shows that
the fluctuations at the microscopic level appear as an anom-
alous dependence in time (anomalous transport), but preserve
the Gaussian character of the distribution for fixed times, as ex-
pected from the linear Gaussian model (2). For a more general
situation see [17].

By introducing a scaling analysis we can calculate the power
spectrum from the position of the ensemble of particles. First
note that the distribution described by Eq. (6) satisfies the scal-
ing relation

)

P(A%2x, At|b) = A™*2 P (x,1|b), (8)
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