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Abstract

We have developed an efficient numerical method for exciton states confined in quantum boxes. The exciton wave function is expanded in terms
of discrete variable representation basis functions. Our numerical approach has proved to be computationally much less demanding in comparison

with the conventional configuration-interaction one.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Semiconductor nanostructures based on advanced fabrica-
tion technologies [1-3] have attracted considerable attentions
in recent years due to their wide range applications to func-
tional materials [4-6]. In the nanostructures, the quantum con-
finement has a great influence on excitonic properties, such as
density of states, binding energy, and oscillator strength. These
properties are highly relevant to the functions inherent in the
semiconductor nanostructures. Since the confinement effects
strongly depend on dimensions, sizes, and shapes of the nano-
structures, it is crucial to elucidate the exciton states in various
nanostructures.

Exciton states confined in nanostructures have often been in-
vestigated theoretically by using either a variational approach
[7,8] or a configuration-interaction (CI) approach [7,9]. In the
variational approach, the exciton wave function is represented
by a trial function. Validity of the approach depends on the
choice of the trial function and, in general, its application to ex-
cited exciton states is practically difficult. In the conventional
CI (cCI) approach, on the other hand, the wave function is ex-
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panded in terms of an appropriate basis set, and thus the ground
and excited states can be described accurately with a large num-
ber of bases. As will be shown later, the cCI approach requires
huge computational costs due to the multi-dimensional inte-
grals to calculate the Coulomb matrix elements. As a result, the
cClI approach is not suitable for calculating multi-exciton states,
dynamics of excitons, or excitons in complex nanostructures.

In the present study, we have developed an efficient numer-
ical method for calculating exciton states confined in nano-
structures. To overcome the drawback of the cCI approach
mentioned above, we adopt the discrete variable representa-
tion (DVR) for constructing a basis set [11-14]. The DVR
method has been employed intensively in molecular science
and proved to be a powerful and efficient manner to calcu-
late molecular properties [15,16]. In the DVR-based CI (DVR-
CI) approach, the Coulomb matrix is reduced to a diagonal
matrix having single-point values with no integrals. This de-
sirable property is due to the fact that the DVR basis func-
tions are coordinate eigenfunctions localized on each grid point
associated with the Gaussian quadrature rule and satisfy the
Kronecker delta property at the grid points. To confirm the
numerical advantage of the DVR-CI approach over the cCI
one, we fully compare the results obtained by the two ap-
proaches.
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Fig. 1. Schematic diagram of a two-dimensional quantum box with width L.
2. Method of calculation

We consider exciton states confined in nanostructures. The
Hamiltonian operator is given by
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where m, and my, are the electron and hole effective masses.
The last term in Eq. (1) is the electron—hole Coulomb interac-
tion potential with e and € being the elementary charge and
the dielectric constant, respectively. V, (V) is the confine-
ment potential for the electron (hole), which is determined by
the confined structure. Although the present method is gener-
ally applicable to various types of nanostructures, we choose a
two-dimensional square box with width L as an example (see
Fig. 1). The confinement potential is given in the form of

0 forO<xi<LandO<y; <L,
oo otherwise,
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where 7; = (x;, y;).

In the cCI approach, the exciton wave function can be ex-
panded in terms of products of the electron and hole single-
particle eigenfunctions [7,9]
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where k; (= nj/L) refers to the wave number, and N, and
N, are the number of basis functions for the electron and hole
states, respectively. Then, the Hamiltonian matrix is written by
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This expression clearly shows that the computation of the ma-
trix H requires the order of N2 four-dimensional numerical
integrals, where N (= N, ezN ,f) is the dimension of the matrix H.
In the case of a three-dimensional square box, N3 six-dimen-
sional numerical integrals are required. These multi-dimen-
sional integrals are apparently computationally demanding and
become a practical difficulty in calculating exciton states [9,10].

To reduce the computational costs of the cCI approach, we
alternatively use DVR to construct the basis set. In the DVR-CI

formalism, the single-particle basis functions are transformed
into the grid-point ones. The transformation matrix is deter-
mined by the grid points and the weights associated with an ap-
propriate Gaussian quadrature rule [11]. Since the second term
in Eq. (4) can be evaluated by the Gauss—Chebyshev quadra-
ture of the second kind [17], we use the Gauss—Chebyshev DVR
[18]. The grid points are given by
L
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and the weights are constants, wy.s = L/(N, + 1). For the
other coordinates y,, xj, and y, the grid points and the weights
are given in a similar way. Then, the transformation matrix is
derived in the form of
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We finally obtain the matrix H in DVR as follows:
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where T denotes the kinetic energy term given by [19]
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Owing to the great advantage of DVR, the matrix of the multi-
dimensional Coulomb integrals [Eq. (4)] is reduced to the di-
agonal matrix with single-point values [12]. Consequently, the
computational time for the matrix elements decreases sharply.
In addition, the matrix H becomes very sparse, i.e., the number
of nonzero elements is only N x (2N, + 2Nj,). Therefore, we
can deal with a large size of Hamiltonian matrix by combining
the Lanczos diagonalization. These great advantages allow us
to calculate even the excited exciton states very efficiently. The
eigenvalues of H correspond to the energy of each exciton state
E®*, and the exciton wave function is expressed by
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