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1. Introduction

Theory of electron magnetohydrodynamic (EMHD) waves has
been studied in a wide range of physical context in recent years.
This is because such study is relevant in variety of physical prob-
lem starting from fast ignition concept of laser fusion in laboratory
[1] to astrophysics [2], space physics, solar physics, etc. In spite
of a long history of investigations there are many important is-
sues which still attract attention to different interesting physical
phenomena such as magnetic turbulence [3], fast magnetic field
penetration in plasmas [4], reconnection of magnetic field [5] and
many other problems [6]. EMHD normally describes the dynamics
of electron fluid in presence of externally applied as well as self-
generated magnetic field. The time scales in which such phenom-
ena can occur are very short e.g. lying between inverse of electron
and ion gyro-frequencies. In such a short time scale heavy ions
remain unmagnetized in a static charge neutralizing background.
Ions being immobile, the flow velocity of electrons determines cur-
rent and hence is directly related to the curl of magnetic field.
In the EMHD the careful inspection shows that the magnetic field
evolves through the explicit nonlinear equation.

As we will see due to the presence of the nonlinearities, the
EMHD dynamics becomes more complicated. A complete theory
of the full nonlinear system is very difficult. However, a self-
consistent numerical simulation is available in Ref. [7]. The ques-
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tion is: Can we do some analysis to get the deeper understanding
of this numerical results? The answer to this question is: We do
have some methods for treating certain aspects of complex nonlin-
ear behavior of such EMHD plasma in a very simplest level. One of
such methods is described in this study. The present day strategy
for a better theoretical understanding is to apply different levels of
perception and knowledge. An analytic numerical view will lead to
a general feeling of which processes are important. More detailed
and narrow views on specific processes are necessary for the un-
derstanding of the ‘elementary processes’. They will thereby lead
to an estimate of the potential the various ‘elementary processes’
do have in the overall dynamical evolution. In this work, we con-
centrate on ‘simple models’ which have been proven to be good
candidates for modeling of some ‘elementary processes’.

The generation and influence of velocity shear on whistler
mode have been well investigated recently by Biskamp and his
collaborators [7]. The results indicate that fully developed EMHD
turbulence is characterized by double layer vorticity sheets and
isolated circular monopolar vorticity eddies both of which con-
stantly annihilated and reformed. Recently it has been shown
that the nonlinear interaction between three whistler waves grows
parametrically [8]. It may be the case that these EMHD vortices
are themselves unstable to formation of shear. The observed pro-
cess of shear field/flow generation, is the combination of several
processes but the most ‘robust’ processes are flattening of mag-
netic field (flux) profile via nonlinear convection and generation
of shear component via Reynolds stresses [9,10]. It appears that
these processes seem to be irrelevant to the particular details of
the magnetic field or flux function structures. In this work we
report the mechanisms of self-generated flow and field to gain
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a better understanding in the theories of EMHD turbulence. As it
is already mentioned such a model could help in scanning wider
range of plasma parameters and elucidate the physics of the phe-
nomenon [11,12].

The rest of the Letter is organized as follows. In Section 2,
a simple physical model for EMHD waves is presented and the
basic equations are derived. In Section 3 four wave coupling pre-
cesses are outlined and explicit growth rate for the modulational
instability are obtained. Also in Section 3, numerical results are
displayed in figures compared with simulations. We conclude in
Section 4 with a discussion of our results.

2. Model and basic equations

The nonlinear fluid equations used to describe the electron
mode are the electron momentum equations, current expressed in
terms of electron velocity J = neve since ions are stationary at fast
time scale. Finally magnetic field is closed by Maxwell’s equation
(Ampere’s law) where we have ignored displacement current as-
suming ω � ω2

pe/ωce . In this Letter we have taken the vastly used
and best illustrated model existing in Refs. [13,14]. The system de-
scribed below is two-dimensional (i.e., ∂/∂z = 0, no variation along
the magnetic field). The nonlinear equations are derived with the
following assumptions:

1. The time scale of the phenomena is very fast so that only elec-
trons can participate in the dynamics and ions being heavy,
they form a static charge neutralizing background. The spatial
scale lies below the ion inertial scale c/ωpi .

2. The density is assumed to be constant which is consistent with
the incompressibility of electron flow, i.e., ∇ · v = ∇ · J = 0.

3. We restrict ourselves within two-dimensional (2D) configura-
tions, where the magnetic field depends on two spatial coor-
dinates (x, y) and on time t .

4. We assume plasma is weakly collisional and the beta value is
low.

We start from electron momentum equation

men
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∂
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)
ve − ne
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)
− ∇pe

− menνeive − menνe∇2ve. (1)

Here we assume that collisions are still frequent enough to make
the pressure isotropic, and the divergence of the stress tensor is
replaced by a scalar viscous diffusion term. The effective viscosity
term used is very qualitative and the collisional diffusion is the
effective energy sink and we have ignored the viscous dissipation.
Using ∇ × E = −(1/c)∂B/∂t we obtain a self-consistent nonlinear
equation for the magnetic field evolutions:

∂

∂t

(
1 − δ2

e ∇2)B − ∇ × [
ve × (

1 − δ2
e ∇2)B

] = ηc2

4π
∇2B, (2)

where
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and δe = c/ωpe is the electron skin depth.
It is convenient to use the two scalar functions ψ(x, y, t), which

is the z component of the vector potential and b(x, y, t), which is
the z component of the magnetic field, instead of B. Then we write
B = êz × ∇ψ + bêz . The evolution equations are
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∂ y
∇2⊥ψ = ν∇2⊥b. (5)

Note that the above equations have been written in normalized
variables. The length scale is normalized by a typical scale length L
and the magnetic field by a typical field intensity B0. Therefore
ψ ≡ ψ/(B0 L). Here de = δe/L is a dimensional parameter and
δe is electron skin depth δe = c/ωpe . The time is normalized by
(Ωed2

e )
−1 where Ωe(= eB0/mec) is electron cyclotron frequency.

A uniform magnetic field B0(≡ dψ0/dx) in the y direction is as-
sumed in deriving above equations and ν = νei/Ωe .

The linear dispersion equation of the system is obtained by
linearizing Eqs. (4) and (5) and assuming that the perturbed quan-
tities vary as exp(ikxx + iky y − iωt), where kx and ky are positive
integers. The dispersion equation is given by

ω = ωc
kyk⊥δ2

e

1 + k2⊥δ2
e
, (6)

where k2⊥ = k2
x + k2

y . This is the dispersion relation for whistler
wave written in unnormalized variables. For kδe � 1 we obtained
ω = ωckyk⊥δ2

e . On the other hand, for kδe � 1 we obtained ω =
ωcky/k⊥ . The later limit corresponds to electrostatic whistler wave.
In the next section we study the nonlinear excitation of shear field
and flow by four wave interactions.

3. Four wave interactions

To investigate the linear parametric excitation of shear field and
flow by a pump whistler wave, the basic mode needed for this
analysis is pump wave and in this analysis we assumed this is to
be a whistler wave:

ξp = ξ0e−iω0t+iky y . (7)

Here ξ represents the axial (b) and poloidal magnetic field pertur-
bations associated with the pump whistler wave. To investigate the
stability of this wave to the generation of shear/zonal flow (bs) and
zonal magnetic field (ψs), the perturbed quantities can be repre-
sented as

ξ s = ξse−iωt+ikxx. (8)

These two modes namely, the pump whistler wave and the shear
mode, can couple to two sideband whistler waves as given below:

ξ± = ξ+ei(ω+ω0)+ikxx+iky y + ξ−ei(ω−ω0)+ikxx−iky y . (9)

The wave number and frequency matching conditions determine
the spatial and temporal dependence assigned to the ± side-
bands. Because of the dispersive character of the whistler wave
two sidebands are nonresonant and are equally important. This
four wave coupling is the simplest model representing the gen-
eration of shear flow and field magnetic field by high frequency
whistler wave. Here ω0 is the mode frequency satisfying the dis-
persion relation for whistler waves

ω0 = ± k2
y
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e
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and the pump wave relationship
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