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Flux-explicit transport laws based on Newman'’s concentrated-solution theory are developed for appli-
cation to phases with domains of imbalanced charge. General procedures are provided to create flux
laws and a current-voltage relation that describe diffusion and migration in isothermal, isobaric, non-
neutral multicomponent electrolytes. To retain thermodynamic consistency within the non-neutral
concentrated-solution theory, driving forces for diffusion are based on the chemical potentials of neutral
combinations of species, and an excess current density is used as a driving force for migration. Procedures
are developed for identifying the solution conductivity and Hittorf transference numbers in non-neutral
electrolytes comprising three or more species. Flux laws for non-neutral binary electrolytic solutions
involving the thermodynamic diffusion coefficient, cation transference number, and ionic conductiv-
ity are presented. When local electroneutrality is assumed, the new transport equations reduce to the

Non-electroneutrality

familiar flux laws for binary electrolytes.
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1. Introduction

Flux-explicit transport laws describing diffusion, convection,
and migration are useful because they can be substituted directly
into material balances. They allow an electrolyte-transport model
to be expressed as a system of second-order differential equations,
improving the stability of solvers and reducing computation time.
Recent work on electrolyte diffusion has focused on applying and
extending Newman'’s application of Stefan-Maxwell theory to mul-
ticomponent electrochemical transport [1,2]. Relatively thorough
reviews of contemporary developments in concentrated-solution
transport theory are given by Datta and Vilekar [3] and Psaltis and
Farrell [4].

This paper develops flux-explicit transport laws and a Maclnnes
current-voltage relation applicable to concentrated n-ary elec-
trochemical phases, without assuming local electroneutrality.
The approach formalizes Newman'’s derivation of transport laws
for binary electrolytic solutions [5], and extends it to create
flux-explicit transport laws for isobaric, isothermal, non-neutral
concentrated multicomponent electrolytes. The current density
is taken to drive migration, and chemical potential gradients of
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independent neutral combinations of species (neutral molecules
or salt formula units) are taken to drive diffusion.

Thermodynamically consistent simulations of an electrochem-
ical transport system can be performed by using n — 1 flux laws in
the form of Eq. (32) to handle the couplings among composition gra-
dients, electric current, and flux, which suffice for the modeling of
galvanostatic conditions. To introduce an electric potential, Eq. (22)
can be added to set up a thermodynamic voltage relative to a refer-
ence electrode of a given kind; or Eq. (25) can be added to introduce
a quasi-electrostatic potential referred to a specific ion, yielding the
modified form of Ohm’s law given in Eq. (26). The ionic conductiv-
ity defined in Eq. (24) and independent transference numbers from
Eq. (33) together represent n — 1 independent transport properties,
leaving 1/2-(n—1)-(n — 2) diffusion coefficients that can be speci-
fied independently without overdetermining the model. In systems
comprising more than three species, one probably has to resort to
the direct use of Stefan-Maxwell coefficients, basing all analysis on
the M matrix defined by Eq. (4). But the procedure laid out here is
nevertheless an efficient route to derive flux-explicit transport laws
that compare easily with Nernst-Planck transport equations [6].

The example of a concentrated binary electrolyte provides a con-
crete application of the method, yielding flux laws (55)-(57); the
electroneutrality assumption then retrieves Newman’s theory, Eqs.
(61)-(63). Commentary about thermodynamic rigor is provided
throughout, and a closing section discusses additional constraints
on the constitutive laws for chemical potentials and the solution’s
molar volume.
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2. Onsager-Stefan-Maxwell theory

Isothermal, isobaric, isotropic transport systems with n con-
stituent species can be modeled accurately [7,8] by the extended
Stefan-Maxwell equation

_c,.vm:zccz?DR;(a,-_aj) forie(l,...,n), (1)
j#i

where ¢; is the concentration of species i, u;, its electrochem-
ical potential, and ;, its particle-averaged velocity; the Dj are
Stefan-Maxwell coefficients, which parameterize the drag force
exerted on each species i as it diffuses through every other species
Jj; R is the ideal-gas constant and T, the absolute temperature; cr
abbreviates the total molar concentration, cr=> ;c;. To simplify
notation it is convenient to introduce a matrix K of diffusional drag
coefficients, with units of force per volume per velocity,

CjCjRT

=

Dy sothat —¢;Vu; = ZK,j(v,» - 7). (2)
j#i

Since species velocities only appear as differences, the extended

Stefan-Maxwell transport laws are invariant with respect to the

choice of reference velocity for convection.

Following Onsager [9], transport Eq. (1) can be expressed equiv-
alently using a basis set of velocities relative to the nth species. Add
(U — ) within the parentheses of each summand in Eq. (2), then
regroup terms to get a sum over velocity differences relative to
species n. The result of this rearrangement is represented by

V=Y My(i; - bn), (3)
J
in which the n x n transport matrix M has entries
K ifi+j,
Mj; = - K ifi=i, (4)
ki

The entries M;, are not necessarily zero, but the difference (7; — 7)
does vanish if j=n. Consequently the corresponding summands in
Eq. (3) do not affect the force density —c;V ; that drives diffusion
or migration of species i.

Although it is necessary to distinguish diffusion or migration
from convection, the invariance of thermodynamic driving forces
with respect to the reference velocity complicates the manipula-
tion of transport equations. Reference-velocity invariance and the
isothermal, isobaric Gibbs-Duhem equation

> V=0 (5)
i

imply that the n x n transport matrix M must be singular, with
rank n— 1. Onsager first stated these facts [9], as well as posit-
ing a symmetric reciprocal relation among the entries of M based
on an examination of the expression for local entropy generation
[10]. Onsager’s symmetry hypothesis has been verified experi-
mentally by Miller [11] and validated theoretically in detail for
Stefan-Maxwell diffusion of neutral components by Monroe and
Newman [12].

A primary thesis of Onsager’s analysis is that on the basis of Eq.
(5), only n—1 Stefan-Maxwell equations are needed to describe
an n-species transport system, because one driving force depends
linearly on the others. Fundamental properties of the M matrix are

> My=0, > My=0, and M;=M;. (6)
j i

In accord with the second law of thermodynamics, the M matrix
must also be non-positive definite and afford a single null eigen-
value. Be aware that the non-positive-definite nature of M does
not in principle restrict all the Stefan-Maxwell coefficients to be
positive.

Onsager’s reciprocal relation for M implies the symmetry of
K through Eq. (4), and consequently, through Eq. (2), that the
Stefan-Maxwell coefficients satisfy Dj = Dj;. When developing
transport equations for an n-ary transport system, it is convenient
to use the symmetry of M at the outset to reduce the number of
independent transport properties involved in the analysis to a set of
1/2-n-(n-1) independent Stefan-Maxwell coefficients. Although
claims have recently been made to the contrary [13], these consid-
erations guarantee the thermodynamic consistency of Newman’s
electrolyte-transport theory.

Helfand (also transliterated from Russian as Gelfand or Gel'fand)
pointed out that the singularity of M prevents rearrangement
of the Stefan-Maxwell equations into flux-explicit forms, and
solved the inversion problem as follows [14]. Since any one of the
Stefan—-Maxwell relations is linearly dependent on the others, one
can discard the equation that involves the chemical potential gra-
dient of species i =n; furthermore, since the nth summand vanishes
on the right of Eq. (3), all of the Mj, can be discarded as well without
a loss of information. After this adjustment of the transport matrix,
one can immediately write a set of n—1 independent transport
laws,

C,-@;Li:ZM;}”(f/j—f/n) forief{l,...,n—1}. (7)
j#n

Here M"" is the (n—1) x (n— 1) matrix formed by removing all
entries of M whose indices refer to species n, so that i and j in
MI.'}” range over all i # n and all j # n. (Note: in this discussion,
the superscript mn on a transport matrix will generally indicate
that the ‘row’ index i ranges over all species except the mth, and
the ‘column’ index j ranges over all species except the nth.) As well
as being symmetric, the truncated transport matrix M" is nega-
tive definite and therefore nonsingular, so Eq. (7) can in principle
be inverted into a velocity-explicit form. Observe that the com-
monly used positive-definite transport matrix L™ = —(M™) " that
appears in the inverted form of Eq. (7) is also symmetric [11,15].

3. Application to electrochemical systems

In systems with electrically charged constituents, let z; repre-
sent the equivalent charge of species i. Any system will be called
‘electrochemical’ if z; # O for some i.

When first defining the concept of electrochemical potential,
Guggenheim pointed out a fundamental difficulty that arises when
applying chemical potentials to the description of species in elec-
trochemical transport systems [16,17]. Gauss’s law suggests that
equilibrium states with homogeneous imbalanced charge cannot
be created in the laboratory. Therefore, in constitutive laws, the
partitioning of electrochemical potentials between terms associ-
ated with species activity and terms associated with electrostatic
potential must necessarily be arbitrary. To ensure that component
activities are experimentally accessible and independent of the
electrical state, continuum-scale physical equations should always
be phrased such that electrochemical potentials appear in groups
associated with electrically neutral combinations of species.

To adopt Guggenheim'’s principle in electrochemical transport
systems, add the requirement that the species n used earlier to
establish a reference velocity is charged, so that z, # 0. Define the
notation

z
Wi = Hi= 2 fin (8)
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