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1. Introduction

Light reflection from an interface between two media is deter-
mined by the wave equation and the boundary conditions, which
follow from Maxwell’s equations. The wave equations for electric,
E and magnetic, H, fields in a homogeneous medium with con-
stant p and € are
2 JLE 82

AH(r,t) = C—M?H(r, 0. (1)

e 0
AE(r,t)=——E(r,t),
Both equations have plane wave solutions

E(r,t) = Eexp(ik - r — iwt), H(r,t) = Hexp(ik - r — iwt),

(2)

where k? = euk(z), ko = w/c and c is the speed of light in vacuum.
The fields E and H are not independent. They are related to each
other by equations

c

H=-S[kxE., E=-—[kxH] 3)
now €w

and, if |E| =1, the length of H is |H| = \/¢/it =1/Z, where Z =

/¢ is called the medium impedance.

If space consists of two halves with different €; and w12,
the wave equations in them (1) are different, and their solu-
tions should be matched at the interface. The matching condi-
tions follow from the Maxwell equations. They require continuity
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of the components E|(r,t), Hy(r,t) parallel to the interface, and
em-E(r,t)), w(m- H(r,t)), perpendicular to it, where n is a unit
normal vector. The wave function in presence of the interface is

‘/,(r, t) — @(Z < 0) (eikyl‘—ia)td’l + eikrd‘—iwt'ﬁrp)
+ Oz > 0)elker-ioty ¢ (4)

where the term exp(ik; - r — iwt)y; with the wave vector k; de-
scribes the plane wave incident on the interface from medium 1,
factors ¥; = E; + H; (i=1,r,2) denote sum of electric and mag-
netic polarization vectors, k;, are wave vectors of the reflected
and transmitted waves, p, T are the reflection and transmission
amplitudes respectively, and @(z) is the step function, which is
equal to unity when inequality in its argument is satisfied, and to
zero otherwise.

The wave vectors k> are completely determined by k;. They
are determined uniquely by the constants €;, i, and by the fact
that ko = w/c and the part k; of the wave vectors parallel the
interface must be identical for all the waves. In the following we
assume that the medium 1 is lossless, i.e. €141 is real, therefore
all the components of k; are also real.

The normal component ky; of the refracted wave is

kot = \/ézﬂzk(z) - kﬁ = \/kﬂ — (€111 — €2/42)K3, (5)
or it can be represented as
ko = \Jel? — I = \/n2k2 — I, (6)

where n = /€ is the refractive index, and we introduced relative
permittivity € = €2 /€1 41.
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The amplitudes p and 7 are well known from textbooks
(see [1], for example). They are calculated differently for TE-wave,
when the incident electric field is polarized perpendicularly to the
plane of incidence, i.e. parallel to the interface (it is usually de-
noted as E;), and for TH-field, when the incident electric field is
polarized inside the plane of incidence (it is usually denoted as
Ep). For both of these cases we have well-known Fresnel formulas

_ M2kii — pakay _ €2k —€1ka1
*7 wakis + pakas €2kl +e€1kay’

and 75, =1+ ps p. In the following we for simplicity assume that
M2 =p1=1,s0 w1 are excluded from all our formulas.

From (6) it follows that for lossless media when 0 <€ <1 is
real, the incident wave, for which k is within nky < |ky| <k, is
totally reflected from the interface. This happens because

ko =iKy, =i, /kﬁ — ek?, (8)

thus the factor exp(iky1z) = exp(—K}, z) of the wave exp(ikar)
exponentially decays, i.e. the refracted wave becomes an evanes-
cent one. Therefore, the energy does not flow inside the medium 2,
and due to the energy conservation it must be totally reflected into
medium 1.

If the medium 2 is lossy or gainy, the constant € is a com-
plex quantity € = €’ £ i€”, with positive € and €”. In this case
outside the total internal reflection (TIR) region (|k|> < €’k3) we
have ky | =k, +ik},, where for small €” (¢"k? < €'k? — |k;|?)

Ky~ \/€'kd — |ky|2,
In the TIR regime, k,, in Eq. (9) transforms into iK%

210
Ky, =~ /lky)? — e’k%, and k| transforms to

2
ki .
2iK5 |

(7)

p

kY ~¢€” —kz (9)
2L 2k,

where

4

Ky, — —iK) =€ (10)

Therefore, at TIR ko ==+K/, +iKJ,, where

Ky, ~\/Iky|2 — €'k (11)

The ‘+’ sign before imaginary part iK, determines exponential
decay of the refracted wave away from the interface for both lossy
and gainy media cases. However the real part, K/, has opposite
signs for lossy and gainy cases.

The reflection amplitudes (7) at TIR look

2

K/ — 6//—1,
2L 2Ky,

ku_ — l'KgJ_ F KéJ_

= , 12
P =l +iky Kb, (12)
€2k1l—61(i1<é/J_iKéJ_) (13)

P ek +er(iKy, £K5 )

The positive value of K/, for lossy medium means that the reflec-
tion coefficient in TIR is less than one, because part of the energy
flux proportional to K/, enters the medium 2 and is absorbed
there. The negative value of K/, for gainy medium means that
the reflection coefficient in TIR is larger than one, because part of
the energy flux proportional to K}, exits the medium 2 and adds
to the TIR wave.

In [2] it was incorrectly claimed (see, for example, critics in [3])
that in the case of TIR from a gainy medium the wave vector in-
side the gainy medium has opposite sign: k; = K/, —iK’,, and
the reflection coefficient at TIR |ps, p|2 is less than unity. If it were
so, then the wave function inside the gainy medium would in-
crease proportionally to exp(K}, z) independently of how small is

Fig. 1. Schematic of the experiment for multiple TIR off gainy medium.

the gain. Since K| ~1/x (see (11)) then for A ~ 1000 nm the in-
tensity of the field inside the gainy medium at a distance 1 mm
from the interface would be larger than intensity of the incident
wave of light by the factor €209 ~ 10860, which surpasses all the
astronomical numbers. It proves that the claim in [2] cannot be
true.

With the correct sign ko1 = —K/, + iK}, the reflection co-
efficient at TIR from a gainy medium is larger than one, and it
increases with the gain. The photons induced by the incident wave
cannot propagate inside the gainy medium by the same reason as
the incident one. They can only go by the tunnelling transmission
into the first medium. The increase in the reflected flux is due to
the sub-barrier induction of the photon, which tunnels from the
gainy medium into medium 1 and coherently adds to the reflected
primary photon. The larger is the gain, the larger is the probability
of such a process.

2. The proposed experiment for strong enhancement of the light
trapped in a glass sphere

The increase of the reflection coefficient at TIR from a gainy
medium can be used to develop a curious experiment for storage
and amplification of light. Imagine a glass sphere with a coupler P,
as shown in Fig. 1. The sphere has thin walls (it is also possible to
use a homogeneous glass sphere) and is surrounded by an excited
gas (or other active media). The ray of light, shown by the thin
line, enters the glass walls through the coupler and then under-
goes TIR multiple times. At every reflection the light is amplified
according to the analysis in the previous section. It is possible to
imagine a geometry in which the ray after entering the glass be-
comes trapped in it, or after sufficiently many reflections escapes
the sphere, as shown by the thick line. The amplification depends
on the number of the reflections and on the gain coefficient of
the active medium. The number of the reflections is very sensi-
tive to the angle of the incident ray. It is important to note, that
the energy accumulates inside the sphere and does not go out of
it. The total reflection works like a pump, and the pumped energy
density can be much larger than the energy density in the sur-
rounding gainy medium. If the overall amplification is sufficiently
high, the glass will melt into a liquid bubble with thin skin filled
with the light, similar to the ball lightning described in [4].

We can estimate the magnitude of the light enhancement in
such a sphere. Assume that for the active medium ¢; ~ 1 —i«, and
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