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Abstract

In the modeling of a large class of problems in science and engineering, the minimization of a functional is appeared. Finding the solution of
these problems needs to solve the corresponding ordinary differential equations which are generally nonlinear. In recent years He’s variational
iteration method has been attracted a lot of attention of the researchers for solving nonlinear problems. This method finds the solution of the
problem without any discretization of the equation. Since this method gives a closed form solution of the problem and avoids the round off
errors, it can be considered as an efficient method for solving various kinds of problems. In this research He’s variational iteration method will be
employed for solving some problems in calculus of variations. Some examples are presented to show the efficiency of the proposed technique.
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1. Introduction

In this work we consider He’s variational iteration method
as a well known method for finding both analytic and approx-
imate solutions of differential equations. The efficiency of this
method for solving various types of problems is shown for ex-
ample in [1-9]. Employing this technique the exact solution of
a linear problem can be obtained by doing only one iteration
step.

This method is used for solving autonomous ordinary differ-
ential systems in [2]. Application of this method to Helmholtz
equation is investigated in [10]. This method is used for solv-
ing Burgers’ and coupled Burgers’ equations in [11]. In [11]
the applications of the present method to coupled Schrodinger—
KdV equations and shallow water equation are provided. Also
the use of this method for solving linear fractional partial dif-
ferential equations arising from fluid mechanics is discussed in
[12]. Other recent works in this field are found in [13-17].
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In the large number of problems arising in analysis, mechan-
ics, geometry, it is necessary to determine the maximal and min-
imal of a certain functional. Because of the important role of
this subject in science and engineering, considerable attention
has been received on these kinds of problems. Such problems
are called variational problems [18].

One well known method for solving variational problems is
direct method. In this technique the variational problem is re-
garded as a limiting case of a finite number of variables. This
extremum problem of a function of a finite number of vari-
ables is solved by ordinary methods, then a passage of limit
yields the solution of the appropriate variational problem [19].
The direct method of Ritz and Galerkin has been investigated
for solving variational problems in [19,20]. Using Walsh se-
ries method a piecewise constant solution is obtained for varia-
tional methods [21]. Some orthogonal polynomials are applied
on variational problems to find continuous solutions for these
problems [22-24]. Also Fourier series and Taylor series are ap-
plied to variational problems, respectively in [25] and [26] to
find a continuous solution for these kinds of problems.

More historical comments about variational problems are
found in [19,20].
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The organization of the rest of this Letter is as follows:

The well known He’s variational iteration method is re-
viewed in Section 2. In Section 3, we introduce the general form
of problems in calculus of variations, and their relations with or-
dinary differential equations are highlighted. To present a clear
overview of the procedure, we select several examples in Sec-
tion 3.1-3.4. A conclusion is presented in Section 4.

2. Variational iteration method

In this technique, the problem is initially approximated with
possible unknowns. Then a correction functional is constructed
by a general Lagrange multiplier, which can be identified opti-
mally via the variational theory [3]. In this method the problem
is considered as

Ly+ Ny=g(x), 2.1

where L is a linear operator, and N is a nonlinear operator,
g(x) is an inhomogeneous term. Using the variational iteration
method, the following correct functional is considered

X

Yn+1=Yn+ / )\(L)’n(s) + Nyu(s) — g(s)) ds,
0

where X is Lagrange multiplier [9], the subscript n denotes the
nth approximation, y, is considered as a restricted variation i.e.
8y, = 0 [4-6]. Taking the variation from both sides of the cor-
rect functional with respect to y, and imposing §y,+; = 0, the
stationary conditions are obtained. Using the stationary condi-
tions the optimal value of the A can be identified.

Since this procedure avoids the discretization of the prob-
lem, it is possible to find the closed form solution without any
round off error. The use of symbolic computation is necessary
for finding the iterations.

In the case of m equations, we rewrite equations in the form

Li(yi) +Ni(y1, ..., ym) = gi(x), (2.3)

where L; is linear with respect to y;, and N; is the nonlinear
part of the ith equation. In this case the correct functionals are
made as

2.2)

i=1,...,m,

X

Yitn+1) = Yin + / Ai (Li(yin(s))

0
+ N(F1a(8)s -+, Ymn(s)) — g(s)) ds, (2.4)
and the optimal values of A;, i =1, ..., m are obtained by tak-

ing the variation from both sides of the correct functionals and
finding stationary conditions using

8yim+n =0, i=1,....m.

3. Statement of the problem

The simplest form of a variational problem can be consid-
ered as
X1

vbuﬂ=/F@Juxyu»w,

X0

3.1)

where v is the functional that its extremum must be found. To
find the extreme value of v, the boundary points of the admissi-
ble curves are known in the following form

y(x1) =B.

The necessary condition for the solution of the problem (3.1)
is to satisfy the Euler—Lagrange equation

y(xo) =a, (3.2)

d
Fy — EF},/ =0, (3.3)
with boundary conditions given in (3.2). The boundary value
problem (3.3) does not always have a solution and if the solu-
tion exists, it may not be unique. Note that in many variational
problems the existence of a solution is obvious from the physi-
cal or geometrical meaning of the problem and if the solution of
Euler’s equation satisfies the boundary conditions, it is unique.
Also this unique extremal will be the solution of the given vari-
ational problem [19].
The general form of the variational problem (3.1) is

U[y1,y2,a)’n]

X1

=/F(x,yl,yz,.-.,yn,y{,yé,..-,y;)dx, (34)
X0
with the given boundary conditions for all functions
yilxo) =ai, yaxo) =2, ..., yn(x0) =0, (3.5
yix)=p1, yn&)=p, ..., ya(x1)=pn (3.6)

Here the necessary condition for the extremum of the functional
(3.4) is to satisfy the following system of second-order differ-
ential equations

F. d F,=0
Vi dx i
with boundary conditions given in (3.5) and (3.6).

The Euler-Lagrange equation is generally nonlinear. In this
Letter we apply the variational iteration method for solving
Euler-Lagrange equations which arise from problems in cal-
culus of variations. It is shown that this scheme is efficient for
solving these kinds of problems.

i=1,2,....n, 3.7)

3.1. Example 1

As an elementary example we consider the following varia-
tional problem

1

minv = /(y(x) +y'(x) — 4exp(3x))” dx, (3.8)
0

with given boundary conditions

Yo =1 yn=e. (3.9)

The corresponding Euler—Lagrange equation is

y" —y —8exp(3x) =0, (3.10)
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