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Abstract

In this Letter, to understand the role of nonlinear dispersion in complex nonlinear wave equations, we introduce and study nonlinear Schrédinger
equation with nonlinear dispersion (called NLS(m, n) equation): iu; + (u|u |"_1) xx +pulu |m_1 = 0. As a consequence, we obtain some envelope
compactons for NLST (1, n) equation and envelope solitary patterns for NLS™ (1, n) equation. Moreover, we also show that NLS(m, 1) equation,
which is nonlinear wave equation with linear dispersion possess both envelope compactons and solitary patterns. Finally, some unusually local
conservation laws are given for NLS™ (n, n) equation and NLS™ (n, ) equation, respectively.
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1. Introduction

In 1993, Rosenau and Hyman [1] presented a new type of
solitons, called compactons, which usually are described by
powers of trigonometric functions, sin(x) and cos(x), and ex-
ist in nonlinear wave equations with nonlinear dispersion. For
example, K (m, n) equation

w4 p(u™) 4+ @") =0, (1.1)

when p =1, (1.1) is referred to as the focusing (+4) branch, the
focusing (4) branch exhibits compact structures, while when
u = —1, (1.1) is referred to as the defocussing (—) branch,
the defocussing (—) branch exhibits solitary pattern structures.
Rosenau found that while compactons are the essence of the fo-
cusing (+) branch, spikes, peaks and cusps are the hallmark of
the defocussing (—) branch which also supports the motion of
kinks. The defocussing branch was found to give rise to solitary
patterns having infinite slopes or cusps [2-9].

Recently, we have shown that nonlinear dispersion is not
necessary condition to possess compactons and solitary pat-
terns for nonlinear wave equation. Many nonlinear wave equa-
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tions with linear dispersion also admit these types of solutions
[6-9]. In addition, Kevrekidis et al. [10] presented discrete
compactons of discrete models, Klein—Gordon-type different—
different equation

iin:g(un)(un+l +up—1) + f(un). (1.3)

In this Letter, to understand the role of nonlinear disper-
sion in complex nonlinear wave equations, we introduce and
study nonlinear Schrodinger equation with nonlinear dispersion
(called NLS(m, n) equation), described by

i+ (ulu™™") |+ pufu™ " =0, (1.2)

where u = £1. When m =3, n = 1, NLS(3,1) equation be-
comes the usual nonlinear Schrodinger (NLS) equation:

ity + tyx + pulul> =0. (1.4)
With the aid of symbolic computation, we obtain some envelope
compactons and solitary patterns of NLS(m, n) equation using
some transformations. In addition, some conservation laws of
two different branches: NLS™ (n, n) equation and NLS™ (, n)
equation are also given.
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2. Envelope compactons

When p =1, (1.2) is referred to as the focusing (+4) branch
and is signed as NLS™ (m, n) equation

iu,+(u|u|"_1)”—l—u|u|m_l =0. (2.1)
We take the following transformation:
ulx, 1) =U(E)exp(ior), §&=kx, (2.2

where k, o are constants to be determined.
The substitution of (2.2) into (2.1) yields the ODE
—oU +K[n(n — DU U2 +nU" U]+ U™ =0. (2.3)

To study compactons of (2.3), we assume that (2.3) has the
solution

UE) = {Acosﬁ@), 1< 7,

) 2.4
0, otherwise,

where A and § are constants to be determined. With the aid of
symbolic computation, the substitution of (2.4) into (2.3) yields

~o Acos” () + A" cos"P (§) + Knp(np — DA" cos™ 2 (¢)
— K202 B2 A" cos™ (£) = 0. 2.5)
Therefore, we have the following sets of equations:

Type 1.n # 1

B=np -2,

mp =np,

—c A+ Kk nB(mp —1)A" =0,
A™ — k*n?BA" = 0.

Type2.n=1
mp=p—2,
—0A—k*B*A =0,

A" +K2B(B—1)A=0.
From the above two sets of equation, we have the following
solutions:

= T n-1’
—1 2

k=""— pr1= (2.6)
2n n+1

n=n T l—-m’
1— 1

k:Tm o, Am—lz%. 2.7

Therefore, it follows from (2.6) that NLS™ (n, n) equation
(2.1) with n > 1 has the envelope compacton solution

[%Cosz(nz_—nlx)]l/(nfl)eim’ |%x| < %,

0, otherwise.

u(x,t) = { (2.8)
In addition, from (2.7), we have the envelope compacton so-
lution of NLS™ (i, 1) equation (2.1) with m < 1,

[0(n12+1) COSZ(PTm ‘/__Gx)]l/(l_m)em’

u(x,t)= |]—Tm 2.9)

—ox| <%,
0, otherwise.

Similarly, if we use another transformation for (2.3),

Asinf(£), 0<&<m,

) (2.10)
, otherwise,

U@ = {
then we have another envelope compacton solution of
NLS™ (n, n) equation (2.1) with n > 1,
(225 s (50) ] Ve,
ue =1 o<ty <,
0, otherwise

@2.11)

and the envelope compacton solution of NLS™ (1, 1) equation
2.1) withm < 1,

. _ 1/(1-m) ;
[_a(m%—_l) sin’ (1% /=0 x) ] [mm o
W D=1 o< /Tox <,
0, otherwise.

(2.12)

Remark 1. When n = 1 and m < 1, NLST(m, 1) equation
is shown to possess envelope compactons, which implies that
nonlinear dispersion is not necessary condition to admit com-
pactons for nonlinear wave equations.

Remark 2. When m =n = 1, NLS™ (m, n) equation reduces to
linear differential equation. When m = n < 1, solutions (2.8)
and (2.11) are singular. When n = 1, m > 1, solutions (2.9)
and (2.12) are also singular.

3. Envelope solitary patterns

When p = —1, (1.2) is referred to as the focusing (—) branch
and is signed as NLS™ (m, n) equation

i+ (ulu™™") | —ulu|""" =0. (3.1)
We take the following transformation:
u(x,t) =U(§)expliot), §&=kx, (3.2)

where k, o are constants to be determined.
The substitution of (3.2) into (3.1) yields the ODE

—oU +k(n(n — DU 2U? +nU"'U") = U™ =0. (3.3)

To study solitary patterns of (3.3), we assume that (3.3) has
the solutions

U (&) = Asinh” (¢),
U(&) = Acosh? (&),

(3.4)
(3.5)

where A and § are constants to be determined. With the aid of

symbolic computation, the substitution of (3.4) into (3.3) yields

—o Asinh? (&) — A" sinhP (§)
+k*nB(nB — A" sinh™P 2 (&)
+k2n? B2 A" sinh™P (£) = 0. (3.6)

Therefore, we have the following sets of equations:
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