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Numerical results show that, FLR lessens wake effects and stopping power, essentially through excitation
of collective plasma electron modes.
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1. Introduction

The energy loss of charged particles in plasmas has been a great
interesting topic due to its considerable importance for the study
of inertial confinement fusion (ICF) driven by heavy-ion beams
[1-3] and fast ignition [4,5], and magnetic confinement fusion
(MCF) heated by neutral beam injection (NBI) [6-8]. Especially,
while NBI as application to heating, current drive and rotation
drive [9] was successfully proved in tokamaks, it has become a
further concern.

To describe energy loss of charged particles in a plasma, there
are two standard analytical approaches [10-12], the dielectric lin-
ear response (LR) and the binary collision (BC) model, which are
complementary to each other. In LR model, considering the ion as
a perturbation of the target plasma, the energy loss is caused by
the interactions between the projectile and surrounding polarizing
plasma particles. And the stopping requires a cutoff at small dis-
tances, where hard collisions between the ion and electrons cannot
be treated any more as a weak perturbation. In BC approxima-
tion, on the other hand, the stopping, taking place in successive
binary collisions between the charged particles and plasma parti-
cles, also requires cutoff parameters at large distances to account
for screening. In the absence of a magnetic field, both approaches
give the same results, if physically reasonable cutoffs are used in
the Coulomb logarithms [13,14]. However, the presence of a mag-
netic field introduces complications. Besides, there are numerical
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simulations to check the results of the above two approaches,
such as particle-in-cell (PIC) and molecular dynamic (MD) simu-
lation [10].

Since magnetic fields are experimentally available in the MCF
and electron cooling processes, many theoretical calculations of the
stopping power in a magnetized plasma have been presented [12,
15-24]. When a charged particle penetrates into a magnetic field,
it suffers the Lorentz force only in the direction across the mag-
netic field. The magnetic field suppresses the momentum transfer
in the transverse direction, but enhances the longitudinal momen-
tum transfer. It is found that the magnetic field reduces the energy
loss for ion motion parallel to the magnetic field while it enhances
the energy loss for transverse ion motion [16,17]. In Ref. [18], the
energy loss rate for arbitrary test particle velocities in the limit of
sufficiently strong magnetic field was calculated, which was much
higher than that without magnetic field. Besides, it is also found
that the magnetic field reduces the stopping power at high parti-
cle velocities, while enhances the stopping power at low particle
velocities [19].

As we all know, most of the theoretical studies on energy losses
in magnetized plasmas only take into account the dynamic polar-
ization of electrons, while neglecting that of ions. These results
are valid if the ratio between the test particle velocity and plasma
electron thermal velocity satisfies u/vre > (me/m;)!/® (here, m,
m; are the masses of electron and ion, respectively) [25]. Actually,
without an external magnetic field, the contribution of plasma ions
on the stopping is relatively small compared to that of the elec-
trons [1]. However, with an increasing magnetic field the electrons
move along the field lines just like beads on a wire, with no energy
loss at all for u || By in the limit By — oo, except for possible col-
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lective effects [17]; at the same time, the energy losses of plasma
ions get larger due to the dynamic polarization of the ions en-
hanced with the magnetic field increased, which is documented in
Ref. [20]. The authors also found that, in a strong magnetic field,
the ion stopping contributes mainly to the energy loss for low
incidence velocity u/vre < 1, while electrons stopping for high in-
cidence velocity becomes dominant in weak magnetic fields [20].

However, to our best knowledge, only a few theoretical studies
on energy losses consider the Larmor rotation of the projectile, and
pay special attention to the case of extreme magnetization, as well
as to the incidence velocity paralleled the magnetic field [18,21].
In Ref. [22], the stopping power involved the cyclotron motion of
the test particle has been detailedly performed with arbitrary ori-
entation between the projectile velocity and magnetic field, which
decreases strongly as the angle varies from 0 to 7 /2. Nevertheless,
the authors only took the dynamics polarization of plasma elec-
trons. And the projectile velocity here is so high that influences of
finite Larmor radius (FLR) are unconspicuous. In Refs. [23,24], the
stopping of an ion projectile at low velocity in a strong magnetic
field is investigated within a full hydrodynamic treatment includ-
ing FLR effects in target ions. For a high velocity incident particle,
the energy loss is mainly due to collisions with plasma electrons.
When the particle slows down, the collisions with ions become
more important. Many experiments show that, in the present gen-
eration of tokamaks, neutral beams predominantly heat ions [26].
The plasma ions can respond thoroughly to the perturbation of the
projectiles while electrons are restricted by the strong magnetic
field due to m; > m,. Therefore, one expects that for the low ve-
locity projectile in helical movements around magnetic field lines,
the dynamic polarization of ions may bring a considerable influ-
ence on the energy loss.

In this work, a linearized dielectric theory is put forward to
calculate the wake effects and energy loss of charged particle in
magnetized two-component plasma, especially considering FLR ef-
fects of the projectile. The comparisons of the induced potential,
perturbed density of the electrons and stopping power for cases
with and without FLR effects for different parameters, such as the
magnetic field, plasma parameters, are presented. We concentrate
our attention on the wake field and stopping power in the regions
of low particle velocity and strong magnetic field, and try to give
the importance of FLR effects on them, especially for the plasma
ions. The Letter is organized as follows. In Section 2, taking into
account the helical movement of the test particle, the linearized
dielectric theory is used to obtain general expressions of the in-
duced potential, perturbed density of the electrons and stopping
power. In Section 3, numerical results are discussed to analyze in-
fluences of FLR on the wake effects and stopping power. Finally,
we offer short conclusions in Section 4.

2. Theoretical model

A schematic diagram is shown in Fig. 1. The plasma under
consideration with an electron component and ion component is
subject to an external constant magnetic field By, which is paral-
lel to z axis. A test particle with charge Ze and velocity u moves
in the magnetized plasma with density ng and angle 6 with re-
spect to Bp. Taking the helical movement of the test particle into
account, the charge density is given by the following expression:

Pext(r,t) = Zed(r —R), (1)
with the position of the test particle
R=5[x—acos(wct)]8[y — asin(wct)]8(z — uyt).

Here, w. = ZeBy/M, a=u_ /w. and M are the cyclotron frequency,
the Larmor radius and the mass of the test particle, respectively.
uy=ucosf and u; =usin@ are the particle velocity component
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Fig. 1. Geometry of the vectors involved in this Letter.

along and across By (without specially indicating, the subscripts ||
and L denote the component along and across By).

The linearized Vlasov equation of the electron-ion plasma may
be written as
af(ﬂ af(il afnl

ot +v. or + weo (V x bo) - Iv
where fs; = fo0 + fo1, With fso the unperturbed distribution
function and f,1 the first order perturbation of o species. The
subscript o = e, i represents the plasma electron or plasma ion.
by is the unit vector paralleled to By. s, My and wee = qoBo/Mmy
denote the charge, mass and cyclotron frequency of o species,
respectively. And, the self-consistent electrostatic potential ¢ is de-
termined by Poisson’s equation
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Assuming that each species in a state of equilibrium obeys the
Maxwellian distribution

T B v2
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Here, vr, =/kpTs/my is the thermal speed. And Ty, ngo are the
temperature and the unperturbed density of the o species, respec-
tively.

Performing the space-time Fourier transform on Eq. (1) through
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where k= {kx, ky, k;} = {ky cosy, k1 siny, k;} is the vector, and
is the angle between k; and x axis.
By solving Eqgs. (2)-(5), the induced potential is obtained as

bind(K, ©) = pexe (k, 0)[1 — 7 (k, )], (6)

where gext (K, @) = pexc(K, @)/60k?, e(k, w) is the dielectric func-
tion of the homogeneous magnetized two-component plasma,
which may be written in the form as
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